

Welcome to Exopy’s documentation!

Exopy is a versatile data acquisition software.

	User guide for Exopy

How to set up Exopy and use it in your lab.

	Extending Exopy

You need to extend Exopy functionalities, you should definitively start here.

	FAQS

Some questions that might have occurred to others too.

	API Documentation

When all else fails, consult the API docs to find the answer you need.
The API docs also include convenient links to the most definitive
Exopy documentation: the source.

Indices and tables

	Index

	Module Index

	Search Page

User guide for Exopy

Exopy high quality graphical user interface should make it quite intuitive to
work with. However it can take some time to discover all its capabilities (who wants
to search all the menus and tabs !). This guide should help you get started and
master the different capabilities of the software.

	1. Installation
	1.1. Compatibility

	1.2. Installing using Conda

	1.3. Installing from source

	1.4. Checking your installation

	2. First steps
	2.1. Starting the application

	2.2. Creating a measurement
	2.2.1. Editing the tools

	2.3. Running a measurement

	3. Instruments
	3.1. Creating an instrument profile

	3.2. Use of profiles

1. Installation

1.1. Compatibility

Exopy is compatible with Python 2.7 and 3.4 or later.

Linux, Windows and OSX should all work as long as Qt 4 or Qt 5 is supported
by the platform.

1.2. Installing using Conda

The easiest way to install exopy and get updates is by using Conda,
a cross-platform package manager and software distribution maintained
by Continuum Analytics. You can either use Anaconda [http://continuum.io/downloads.html] to get the full stack in one download,
or Miniconda [http://conda.pydata.org/miniconda.html] which will install
the minimum packages needed to get started.

Once you have conda installed, just type:

$ conda install -c exopy exopy

or:

$ conda update -c exopy exopy

Note

The -c option select the exopy channel on <http://anaconda.org> as Exopy is
not part of the standard Python stack.

1.3. Installing from source

Exopy itself is a pure python package and as such is quite easy to install from
source, to do so just use :

$ pip install https://github.com/Exopy/exopy/tarball/master

The dependencies of Exopy however can be more cumbersome to install. You can
find the list in the setup.py script at the root of the Exopy repository.

1.4. Checking your installation

You should then be able to start exopy using the exopy command in a command
line or the launcher present in the Anaconda Launcher if you are using
Anaconda.

In case this does not work you can run the application from the command line
using:

$ python -m exopy -s

This allows to display the error log directly in the console which should allow
you to track down the origin of the issue.

2. First steps

Once you have installed Exopy you are ready to set it up, then prepare and run
your first measurement. The following sections will take you through those steps.
More details about the instruments and how to customize your measurement will be
given later on in this manual.

Contents

	First steps

	Starting the application

	Creating a measurement

	Editing the tools

	Running a measurement

2.1. Starting the application

You can start Exopy either using the Anaconda Launcher, or simply using the
exopy command at the command line:

$ exopy

If you are starting Exopy for the first time, you will be prompted to choose a
folder in which the application will store a number of settings and also write
the log file. In the following of this guide this directory will be referred to
as the application directory.

When the application starts you should see this window:

.. todo:: add main window image

Note

The first start up can be pretty slow as the application needs to compile
the application graphical user interface, but as the result of this
process is cached subsequent start ups should be much faster.

The different panels can be re-organized, tabbed or reduced. The bottom panel
is used for log messages, it will display messages from the application.
The top left panel is used to edit measures, actually multiple measures can be
edited at the same time and similar panels will be opened if necessary. The
top right panel display the measures waiting to be performed.

The next sections will detail how these panels work.

Note

The exopy command accepts some optional arguments. Use:

$ exopy -h

To learn more about the supported options.

Note

If you installed a broken extension package, Exopy may fail to start. In
that case, the application should display a dialog explaining the
issue. The easiest way to fix it is to uninstall the offending package
and report the bug to its maintainer. If nothing works (and you have
already set the application directory), you can have a look at the log file.
If nothing works do not hesitate to contact the maintainer.

Note

Exopy is made out of different plugins providing different capabilities.
To speed up the application start-up, only the needed plugin are
actually started when launching it. When a new plugin starts, a dialog will
show up describing the error(s) if any occurred. At any time you can access
a summary of those issues under the menu Tools/Show errors report.

2.2. Creating a measurement

A measurement is made of different pieces :

	a hierarchy of tasks to perform.

	a set of tools which are mostly optional.

The tasks are the true backbone of the measurement. Each one describes an elementary
step of the measurement. They are organized in a tree structure hence allowing more
flexibility than simply nested loops. Information can be passed between Tasks
through a shared database.

When creating a new blank measurement (using the File/New measurement menu), the
panel added to the graphical interface allows you to edit the tasks and the
tools. This panel contains a tree view of the task hierarchy and to its right
the different editors, organized in tabs, that can be used to edit the
hierarchy. To edit the tools, you need to click the Edit tools button ; the
edition of tools will be described in Monitors and tools

Each measurement has a name, an id and a root directory. The name is intented to
describe the purpose of the measurement while its id can act as a counter to
discriminate multiple execution of the same measurement - it should be a unique
identifier. The root directory is use to save an ‘.meas.ini’ file corresponding
to the measurement and the associated log file. It can also be accessed by the tasks
to serve as root directory to save the measured data.

The task hierarchy starts empty, with only the root task. From there you can use
either the tree context menu or the button in the editor to the right of the
tree to add a first task. Further tasks can be added using the context menu of
the tree or the ‘>’ in the standard editor (selected by default). The tree view
can also be used to rename the tasks and re-organize them with drag-and-drops.
The standard editor allows to set most of the tasks parametersand is sufficient
for basic measurement (the role of the other will be described in
measurement_edition_editors).

Once you click to add a task, a dialog window opens to allow you to select a task.
When selecting a task, a description will appear on the right and if the task
necessitates some parametrization the appropriate tools will be provided. Each
task needs a name ; one is provided by default but for clarity sake it may
be best to change it.

Warning

It is not possible to have two Tasks with the same name at a given nesting
in the hierarchy.

Once the task is added to the hierarchy, you can edit its parameters. A number
of them can be specified as formulas following the python syntax (in this case
the tooltip of the widget should give a hint about what is expected and allowed
in the field). In the formula fields, one can access the values stored in the
database using the following syntax : {TaskName_entryname}. The fields provide
autocompletion, suggesting the different possibilities and hence avoiding the
need to remember all the possibilities.

Note

In the standard editor the small button shown close to each task can be use
to add/move/remove the tasks.

Note

For task using a physical instrument, you need to specify the instrument to
use. How to register an instrument so that it can be selected in the task
is explained in the next section.

Once you are happy with your measurement you can save it using either the menu or
the button in the panel. Measures are saved under the ‘.ini’ format which
is text-based and can easily be re-edited if need be.

Note

You can also save a measurement using ‘Ctrl+S’. If you are editing multiple
measures, the last measurement you selected will be saved.

The last step before executing your measurement is to enqueue it. When enqueueing
a measurement automatic checks are run, validating for instance that all the
formulas entered can be evaluated. If the checks pass the measurement will appear
as enqueued, BUT the editor won’t be closed. It must nonetheless be noted
that editing this measurement won’t change the state of the enqueued measurement.
If some checks do not pass or raise some warning a dialog will pop-up. If only
warnings where emitted (for example the measurement will override some existing
files), you can choose to enqueue the measurement nevertheless. Actually even if
some errors occurred you can force the enqueueing but you should have a very
good reason to do so.

Note

You can re-edit an enqueued measurement by opening a dedicated dialog using the
button next to the measurement name in the queue.

The next section will shortly review aditional options to customize the measurement,
before moving on to the execution.

2.2.1. Editing the tools

The tools are optional and allow to customize three parts of the execution:

	pre-execution hooks are run before starting the actual measurement and can
be used to validate the parameters in the measurement or collect the state of the
application.

	monitors are active while the main part of the measurement is running and can
report on the progress of the measurement.

	post-execution hooks are run after the main part of the measurement has been
executed and can run even if the main part of measurement failed.

More details can be found in Monitors and tools.

Congratulations, your measurement is now waiting for execution ! The next section
will describe how to start it and what happens next.

2.3. Running a measurement

Starting the measurement is straightforward as you simply have to click on the
‘Start’ button. If no ‘engine’ is currently selected (an engine is responsible
for executing the tasks), you will be prompted to choose one. The default one
coming with Exopy will add another log panel just by the one use by the
application.

For each enqueued measurement, the execution will happen as follow:

	the checks are run once again as at enqueuing some of them may have been
skipped (for example if a running measurement was using an instrument, its
properties could not be tested).

	the pre-execution hooks are executed.

	the main task is handed over to the engine for execution. It is at this step
that the monitors will be started if you attached any to your measurement.

	the post-execution hooks are called.

Note

The engine is responsible for the execution of tasks. Exopy comes with a
builtin one executing the tasks in a different process to limit
interferences between the edition and the execution of measurement.

Note

If a hook also executes tasks, it will also hand them over to the engine
for execution.

At any step of the execution, you can pause the measurement or stop. Note however,
that if a long running task is under way and it does listen for the proper
signals you may have to wait for this task to complete before seeing the
execution pause or stop.

Pausing can be handy if you need to manually change a parameter on one
instrument for example. When you resume the measurement, all previously known
states of the instruments will be re-initialized so that your intervention does
not affect the state of the measurement.

When stopping a measurement, you will be asked whether you want or not to run the
post-execution hook(s) (if any is present). This is because you may have
included safety settings in the post hook, hence you need to be sure they
will be executed. Note that when stopping, you choose to either stop the
current measurement and execute the next ones or stop everything.

Note

After trying to properly stop a measurement, you will be offered to force the
operation. This should have an immediate effect on the measurement execution
but may leave some systems (the VISA library) in an undefined state.

Note

While a measurement is running the application will prevent closing to avoid
crashing everything by clicking accidentally on the ‘x’ button.

Those are the basics, but to be able to run a meaningful measurement you will need
to use some instruments. The next section will explain how those are handled in
Exopy and how to register one so that it can be used in a measurement.

3. Instruments

Instruments are at the root of every physical measurement. In order for Exopy to
be able to work with an instrument, it needs :

	a driver, which is the layer responsible for transferring the instruction
from the program to the instrument and can be written using the VISA protocol
or a custom DLL.

	enough information to open the communication with the instrument (we will call
those information the profile of the instrument).

Assuming that somebody wrote the driver for the instrument all you will have
to do will be to provide the information needed by the profile. The next
sections will explain you how to provide those informations and how Exopy
manages them.

Contents

	Instruments

	Creating an instrument profile

	Use of profiles

3.1. Creating an instrument profile

All informations related to the instruments can be accessed through the
‘Tools/Instruments/Open browser’ menu. This is where you need to go to add
profiles.

This will open a dialog holding different tabs :

	The first one is used to manage the instrument profile and will be discussed
in details in this section.

	The second one displays the current use of the profiles and allow you to track
what part of the application is currently using the instruments.

	The third one simply allows you to check the known drivers.

The first tab holds the list of the known profiles, which is of course empty to
begin with. Afterwards selecting a profile will display a summary of the
information stored in the profile, which can be edited or deleted using the
so named buttons below the summary. To add a profile you should use the ‘Add’
button, which opens another dialog.

A profile contains different pieces of information :

	an id which allows you to identify the instrument when you need to select it.

	the model of the instrument this profile corresponds to.

	the connection information (named connections) which are used to open the
connection. This typically contain the ‘address’ of the instrument. Note that
you can have multiple valid connections for a single instrument if it
supports different protocols (for example a lot of modern VISA-based
instrument can be addressed either through USB or TCPIP).

	the settings which allow you to pass additional parameters to the driver.
Specifying settings is fully optional and depends on the architecture of the
driver.

First you should fill in the id, and select the model of the instrument. To do
so use the ‘Select’ button to open yet another dialog. This dialog presents the
the known instruments models as tree where the model are grouped by
manufacturer (and serie if the model is part of a serie). To find the model you
are looking for more quickly, you can also filter based on the type of
instrument (you can for example display only the DC sources). When selecting a
model the right panel will display more information such as the drivers that
can be used and the allowed connections and settings (note that not all
connections and settings apply to all drivers).

Once you have selected the model, you will be able to add connections and
settings. You can add at most one connection for each supported connection type
(a connection type is considered supported if at least one driver supports it).
On the contrary, multiple settings of the same type can co-exist (they must
have different names).

When adding a connection or settings, you are first prompted to choose one, and
given a brief description of each one. Once added you can select it and provide
the expected information.

Note

For VISA connections, you should only have to provide the address as most
other fields should be already pre-completed based on the infos provided
by the drivers.

You are now done and can add the profile. But before doing so you may want to
validate that the information you provided are correct. To do so click on
the ‘Validate’ button. A dialog will show. On this dialog, you should select
the connection you want to test and if pertinent the driver and settings to use
for the test. Once this is done click on ‘Test connection’ (and wait). The
result of the operation will be displayed in the field below.

3.2. Use of profiles

The second tab of the dialog allows to know what part of the application is
currently using instruments. Note that currently only one part of the
application can use instruments at any given time.

Typically when starting a measurement the instruments used in the measurement should
go from unused to used by the ‘exopy.measurement’ plugin.

Extending Exopy

Exopy is designed with the idea that user should be able to extend it to fit
their own needs. The following section will describe how one should proceed to
do so. The three first sections describe general concepts which are always
applicable, the following ones are dedicated to the extension of specific part
of the application.

If you need to extend the functionalities provided by an extension package
please refer to its documentation for the specifics of the procedure.

	1. Glossary and principle
	1.1. Set up exopy in developper mode

	1.2. Application architecture

	1.3. Structure of a plugin

	1.4. Extension packages

	2. Interacting with the core of Exopy
	2.1. Providing application wide commands and sharing state

	2.2. Customizing application start up and closing

	2.3. Using the built in preferences manager

	2.4. Declaring error handlers

	2.5. Declaring dependencies

	2.6. Customizing logging

	2.7. Contributing to the application interface

	3. Tasks and interfaces
	3.1. Creating a new task

	3.2. Creating a new interface

	3.3. Creating your own task filter

	3.4. Creating your own task configurer

	3.5. More on tasks internals

	4. Instruments
	4.1. Instruments within Exopy

	4.2. Registering a driver

	4.3. Registering a user

	4.4. Registering a starter

	4.5. Registering a connection

	4.6. Registering a settings

	4.7. Registering a manufacturer alias

	5. Writing and running tests
	5.1. Writing test using pytest

	5.2. Running the test suite

	6. Style guide
	6.1. Header

	6.2. Line length

	6.3. Docstrings

	6.4. Naming conventions

	6.5. Import formatting

	6.6. Python version compatibility

	7. Atom and Enaml
	7.1. Atom

	7.2. Enaml

Note

When writing code for Exopy, or an extension packages you should follow the
project style guides described in Style guide. Of course if you are
developing a private extension you are free to do as you see fit but in
order for a contribution to Exopy or one of its official extension package
to be accepted it must follow those style guides.

Note

Exopy does not export any name in the __init__.py module. However for
ease of use the objects necessary to extend Exopy functionality are exported
in the api.py file associated with each plugin.

Note

Exopy is built on top of Atom and Enaml. Please have a look at
Atom and Enaml for an explanation on how this influence the code.

1. Glossary and principle

Exopy is built a a plugin-application. Each functionality is contributed by a
plugin which is mounted at application start-up (or later) and can be
unmounted. This adds a bit of complexity to the application but a lot of
flexibility. This section will introduce some notions and definitions which
will be used in the following of this guide.

Contents

	Glossary and principle

	Set up exopy in developper mode

	Application architecture

	Structure of a plugin

	Extension packages

1.1. Set up exopy in developper mode

Here we describe a simple workflow for developpers to contribute to exopy. It
is convenient to use a git GUI such as smartgit. Then, create a repository on
your computer and clone all the exopy repositories (exopy,
exopy_hqc_legacy, exopy_pulses, etc). On your command terminal, navigate to the
folder of each repository, and type the following command:

$ python setup.py develop

this install allows exopy components to be well detected while directly taking
account any change made to the code. When you want to add a development, use
your git GUI to create a branch from master, and give it a consistent name.
When you finish your development, rebase to master, and then push your branch.
Rebasing to master makes it as if you branched off master the day you push,
which means you incorporate all the changes on master up to that day, and this
forces you to deal with potential conflicts. Note that pushing rebased branches
implies rewriting the history of the remote branch, and hence you will need to
force push your changes. You can now open a pull request. Your code will be
discussed among the exopy contributors, and when judged adequate, it will be
merged onto the master branch.

Note

A convenient way to install all dependencies for the packages is to install
from conda (see Installation for details) and to then uninstall the
packages you want to work on in develop mode. BE SURE to uninstall the
conda package first, before re-installing in develop mode.

Note

While you are developping you can switch between various python versions
through the Anaconda environment to test your code before pushing.

1.2. Application architecture

At the core of the application stands the workbench which is responsible for
handling the registering and unregistering of all plugins. It is through it
that one can access to a plugin. All plugins can access to the workbench
through their ‘workbench’ attribute.

See the Workbench in enaml.workbench.workbench.py for more details about the
capabilities of the workbench.

1.3. Structure of a plugin

A plugin is divided into two parts:

	a manifest (subclass of PluginManifest) which
is purely declarative and states what functionalities the plugin contribute
to the application and how its own functionalities can be extended.

	an active part (subclass of Plugin) which implement
the logic necessary for the new functionality provided by the plugin (such
as the handling of the contributions to the plugin functionalities).

Most of the time, you won’t need to write the active part as you will simply
contribute new capabilities to existing plugin.

The manifest of a plugin is written in an enaml file (.enaml). It must be given
an id (which must be unique and is a dot separated string, ex:
‘exopy.app.logging’) and can have a two kind of children :

	ExtensionPoint children are used to declare points to which other plugin
can contribute to extend the plugin capabilities. The extension point needs
an id.

	Extension children are used to declare contribution to other plugins, they
must have an id and declare to which extension point they are contributing.
The extension point is the combination of the plugin id and the extension
point id. The nature of the children of an extension depends on the
extension point to which the extension contributes.

For example the ‘exopy.instruments’ plugin is responsible for collecting
drivers for instruments (which can be contributed by other plugins) and
managing the access authorisation to each instrument to avoid conflict between
different part of the application.

Note

The plugin architecture used in Exopy comes from the Enaml [http://nucleic.github.io/enaml/docs/] library which
is also used for building the graphical user interface (GUI). If you want
to know more about the way plugins works in Enaml [http://nucleic.github.io/enaml/docs/] you can look at
this document [https://github.com/nucleic/enaml/blob/master/examples/workbench/crash_course.rst].

1.4. Extension packages

In order to load the plugin you want to add to Exopy the application needs a way
to detect it. To do so at start up Exopy scan installed python packages looking
for the the following setuptools entry point : ‘exopy_package_extension’, which
must point to a function taking no arguments. This function must return an
iterable of manifests which will be registered.

This means that whatever you want to contribute to Exopy you must make it an
installable python package. The Exopy organisation on Github [https://github.com/Exopy] has a dummy
repository [https://github.com/Exopy/exopy_ext_demo] that you can use as a template when creating your own package. It
has the basic structure you need, you simply need to change the name of the
package (in setup.py and the folder) and make the bootstrap function
found in the __init__.py file of the package return the manifests you want to
register. Once this is done the easiest way to work is to install your package
in development mode by running from the command line (from the directory of the
setup.py file) the following command :

$ python setup.py develop

In development mode, files are not copied to the python site-packages folder
but python directly looks into the original folder when it needs them, so you
can modify them and directly see the result without re-installing anything.

2. Interacting with the core of Exopy

This section will focus on the functionality offered by the plugins
constituting the core of the Exopy application and how custom plugin can use
and or extend those functionalities.

Contents

	Interacting with the core of Exopy

	Providing application wide commands and sharing state

	Declaring a Command

	Declaring a State

	Customizing application start up and closing

	Declaring an AppStartup extension

	Declaring an AppClosing extension

	Declaring an AppClosed extension

	Using the built in preferences manager

	Editing preferences object

	Declaring error handlers

	Declaring dependencies

	Customizing logging

	Contributing to the application interface

	Adding entries in the main window menu bar

	Providing new workspaces

2.1. Providing application wide commands and sharing state

One usual need in plugin application is to make available to all other part of
the application some function (for example the possibility to request the use
of a driver) or to let other part of the application what is the state of a
plugin (for example a list of all the available drivers).

One could of course directly access the plugin to get those informations but
in a plugin application it is a good to avoid such interferences. Those
informations are actually delegated to two plugin responsible for managing
them :

	the ‘enaml.workbench.core’ plugin is in charge of managing commands which are
the equivalent of application wide available function. Each command has an
id which is used to invoke it using the invoke_command of the CorePlugin
(this is the only case in which one needs to access directly to a plugin).
When invoking a command one must pass a dictionary of parameters and can
optionally pass the invoking plugin. To know what arguments the command
expect you should look at its description in the manifest of the plugin
contributing it.

	the ‘exopy.app.states’ plugin is in charge of managing states which allow to
get access to a read-only representation of some of the attributes of a
plugin. The state of a plugin can be requested using the Command
‘exopy.app.states.get’ with an id parameters identifying the plugin
constituting the state. If you need to access to such a state you should
observe the alive attribute which becomes False when the plugin
contributing the state is unregistered.

2.1.1. Declaring a Command

In order to declare a command, you must contribute a Command object to the
‘enaml.workbench.core.commands’ extension point. A Command must have :

	an id which must be unique (this a dot separated name)

	a handler which is a function taking a argument an ExecutionEvent instance.
The execution event allows to access to the application workbench
(‘workbench’ attribute) and to the parameters (‘parameters’ attribute) passed
to the invoke_command method. IF the command need to access
to the plugin you can do so easily using the workbench.

	a description which is basically the docstring of the command and should be
formatted as such (see Style guide).

2.1.2. Declaring a State

In order to share the state of your plugin you must contribute a State object
to the ‘exopy.app.states.state’ extension point. A State must have :

	an id which must be unique and can be the id of the plugin but does not have
to.

	the names of the members of the plugin the state should reflect (as a list).

	an optional description.

2.2. Customizing application start up and closing

In some cases, a plugin needs to perform some operation at application start up
(for example discover extension packages, or adding new logger handlers) or
some special clean up operations when the application exits. It may also need
to have a say so about whether or not the application can exit (if a measurement
is running the application should not exit without a huge warning). The
‘exopy.app’ plugin is responsible for handling all those possibilities. It
relies on three extension points (one for each behaviour) :

	‘exopy.app.startup’ accepts AppStartup contributions and deal with the start
up of the application.

	‘exopy.app.closing’ accepts AppClosing contributions and deal with whether
or not the application can be closed.

	‘exopy.app.closed’ accepts AppClosed contributions to run clean up operation
before starting to unregister plugins.

Note

The customisation of the start up and exit of the application should only be
used for operations not fitting into the start() and stop()
methods of the plugin. This customization fits operations that must be
performed at application start up and cannot be deferred to plugin starting,
or clean up operations requiring the full application to be active (ie not
dependent only on the plugin state).

2.2.1. Declaring an AppStartup extension

In order to customize the application start up, you need to contribute an
AppStartup object to the ‘exopy.app.startup’ extension point. An AppStartup
must have :

	an id which must be unique and can be the id of the plugin but does not have
to.

	a run attribute which must be a callable taking as single argument the
workbench.

	a priority, which is an integer specifying when to call this start up.

Note

Start up are called from lowest priority value to highest and by their
order of discovery if they have the same priority. The default priority is
20.

2.2.2. Declaring an AppClosing extension

In order to customize how the application determine whether or not it can exit,
you need to contribute an AppClosing object to the ‘exopy.app.closing’
extension point. An AppClosing must have :

	an id which must be unique and can be the id of the plugin but does not have
to.

	a validate attribute which must be a callable taking as arguments the
main window instance (from which the workbench can be accessed) and the
EventClose associated with the attempt to close the application. If the
plugin determine that the application should not be closed, it should call
the reject method of the EventClose.

2.2.3. Declaring an AppClosed extension

In order to customize the application closing, you need to contribute an
AppClosed object to the ‘exopy.app.closed’ extension point. An AppClosed
must have :

	an ‘id’ which must be unique and can be the id of the plugin but does not
have to.

	a ‘clean’ attribute which must be a callable taking as single argument the
workbench.

	a priority, which is an integer specifying when to call this start up.

Note

Closed are called from lowest priority value to highest and by their
order of discovery if they have the same priority. The default priority is
20.

2.3. Using the built in preferences manager

If any of your plugin need to retain user preferences from one application run
to the next it should use the built-in preferences management system, which
is straightforward. First your plugin should inherit from
HasPrefPlugin and should call the parent class start method in its own
start method. Second all members which should be saved should be
tagged with the ‘pref’ metadata (use the tag method). The value of the
metadata can be True or any of the values presented in :ref: TODO. All value thus
tagged are loaded from the preference file if found, and saved when the user
request to save the preferences. Finally, a Preferences object to the
‘exopy.app.preferences.plugin’ extension point. A single Preferences object
can be contributed per plugin.

Note

The preferences system saves object by writing their repr to a file so any
object whose repr can be evaluated by literal_eval can be saved
(literal_eval is used for security reasons).

A Preferences object has the following members :

	‘auto_save’: list of the names of members whose update should trigger an
automatic saving of the preferences.

	‘edit_view’: an enaml Container used to edit the preferences of the plugin.
If no such object is conytributed the default templating mechanism presented
below is used.

	‘saving_method’: name of the plugin method to use to retrieve the values of
the members which should be saved.

	‘loading_method’: name of the plugin method to use to update the values of
the saved members.

A Preferences object can be left blank as the default values are fine most of
the time.

2.3.1. Editing preferences object

2.4. Declaring error handlers

During the application lifetime errors can occurs and the user needs to be
informed about them. Exopy provides a command to do so ‘exopy.app.errors.signal’.
This command expects a ‘kind’ keyword specifying which handler to use to for
reporting this error. The selected handler determine the expected keywords.

By default Exopy provides the following handlers, which displays the error and
log it:

	‘error’ : To report an error which does not deserve a more complex handler.
It expects a single ‘message’ keyword.

	‘extensions’ : To report an error related to the loading of an extension.
It expects a ‘point’ keyword referring to the extension point where the error
occurred, and an ‘infos’ dictionary describing the issues that occurred.

In some situations, it is desirable to wait before reporting errors that the
execution of some code completed. To this effect the error plugin provides
the ‘exopy.app.errors.enter_error_gathering’ which will hold the processing
of the errors till ‘exopy.app.errors.exit_error_gathering’ is called.

Plugins can contribute new error handler to the ‘exopy.app.error.handler’
extension point. The contribution should be an ErrorHandler object.

An ErrorHandler needs to declare :

	‘id ‘: a unique id which will be used as ‘kind’ when calling
‘exopy.app.errors.signal’

	‘handler’ : a method handling the error. Note that to deal with error
gathering it must be able to handle list of dictionary and not only
dictionary. The handler shoudl log that an error occurred and return a widget
to be displayed if it makes sense.

	‘report’ : a method which should provide a summary of the errors that
occurred it is meaningful.

Note

As using this mechanism will cause a window to be displayed for the user
sakes these commands should be called only from function/methods directly
invoked at the level of the GUI.

2.5. Declaring dependencies

When loading and transferring complex object over the network Exopy needs to
collect all the base classes needed for reconstructing the object in an
environment lacking an active workbench. These are considered to be
build dependencies. In the same way some resources can be necessary to execute
some part of the application and need to be queried beforehand to allow the
system to run in a situation where the workbench is absent. Those are
considered to be run-time dependencies.

If your plugin introduces a new type of object which can, for example, be used
in tasks either as a build or as a runtime dependency you need to contribute
either a BuildDependency object to the ‘exopy.app.dependencies.build’
extension point or a RuntimeDependecyCollector object to the
‘exopy.app.dependencies.runtime_collect’ extension point. In the case of
runtime dependencies, the collector is not responsible for the analysis of the
dependencies of an object this is left to an associated
RuntimeDependecyAnalyser, which allow to use the same kind of dependeny in
object with totally different structures and for which the same scheme of
analysis cannot be used. RuntimeDependecyAnalyser can be contributed to the
‘exopy.app.dependencies.runtime_analyse’ extension point.

After analyses dependencies are stored into dedicated container class. Those
containers can then be used to request the identified dependencies. Once again
the same kind of container is returned which store the dependencies as a nested
dict in its ‘dependencies’ member. The top level of that dict corresponds to
the id of the dependency collector. Under each collector id the dependencies
are stored simply by id.

Note

An object introducing a new kind of build dependency should have a dep_type
attribute which should be an atom.Constant and which must be saved if the
object can be saved under the .ini format.

A BuildDependency needs:

	an ‘id’ which must be unique and must match the name used for dep_type
attribute value of the object this dependency collector is meant to act on.

	‘analyse’: a method used to determine the dependencies of the object under
scrutiny. Build dependencies should be added to the dependencies dictionary
and runtime dependencies analysers ids should be returned (they will be
called by the framework at a later time).

	‘validate’: a method checking that all dependencies corresponding to this
collector can be collected (they exist).

	‘collect’: a method collecting the build dependencies previously identified
by the analyse method.

A RuntimeDependecyCollector needs:

	an ‘id’ which must be unique.

	‘validate’: a method checking that all dependencies corresponding to this
collector can be collected (they exist).

	‘collect’: a method getting the runtime dependencies previously identified by
the analyse method. This method should request the privilege to use the
dependencies if it makes sense.

A RuntimeDependecyAnalyser needs:

	an ‘id’ which must be unique.

	a ‘collector_id’ which should match a declared RuntimeDependencyCollector id.

	‘analyse’: a method used to determine the runtime dependencies of the object
under scrutiny. The dependencies should not be collected.

Please refer to the API documentation for more details about those objects and
the signature of the methods that need to be implemented.

2.6. Customizing logging

By default Exopy use two logs:

	a log collecting all levels and directed to a file (in the application folder
under logs) and which is rotated daily or every time the application starts.

	a log collecting INFO log and above and stored in a string with a max of 1000
lines. This string is meant to be used for displaying the log in the GUI, and
is available from the state of the log plugin (‘exopy.app.logging’).

If you need to add handlers, formatters or filters, you should do so in the
start() method of your plugin by calling the corresponding commands
(found in LogManifest).

2.7. Contributing to the application interface

2.7.1. Adding entries in the main window menu bar

Plugins can also add new entries to the menu bar of the application main
window. To do so they should contribute MenuItem and ActionItem to the
‘enaml.workbench.ui’ plugin.

2.7.2. Providing new workspaces

3. Tasks and interfaces

Tasks form the backbone of Exopy measurement principle. A task represents an
action to perform during a measurement. Tasks can be assembled in a hierarchical
manner with any level of nesting. Tasks support parallel execution (using
threads) and the associated synchronizations, they can also exchange data
through a common database.

This section will first focus on the minimal amount of work necessary to create
a new task and register it in Exopy. This part will introduce another important
concept which is the one of interfaces whose creation will be detailed in the
following section. Finally more details about the internals of the tasks will
be discussed.

Contents

	Tasks and interfaces

	Creating a new task

	Implementing the logic

	When to use interfaces

	Creating the view

	Registering your task

	Creating a new interface

	Minimal methods to implement

	When to use interfaces

	Creating the view(s)

	Registering your interface

	Creating your own task filter

	Creating your own task configurer

	Minimal methods to implement

	Creating the view

	Declaring the configurer

	More on tasks internals

	Parallel execution, waiting, stopping and pausing

	Database access and exceptions

	Shared resources

	Edition mode vs running mode

3.1. Creating a new task

Creating a new task is a three step process :

	first the task itself which holds the logic must be created.

	to allow a user to correctly parametrize the task a dedicated widget or view
should also be created.

	finally the task must be declared in the manifest of the plugin contributing
it.

3.1.1. Implementing the logic

The task itself should be a subclass either of SimpleTask or ComplexTask,
according to whether or not it can have children tasks attached to it.

The task parameters should be declared using the appropriate member and tagged
with ‘pref’ in order to be correctly saved. If the default way of
saving/restoring (repr/literal_eval) is enough simply use True as a value
otherwise you can specify the function to use to serialize/desarialize should
be passed as a tuple/list.

If a parameter value can depend on values stored in the database, it should be
declared as a Unicode member to let the user enter a formula (‘{‘ and ‘}’ are
used to identify the part to replace with the value stored in the database).

from atom.api import Unicode, Int

class MyTask(SimpleTask):
 """MyTask description.

 Use Numpy style docstrings.

 """
 #: my_int description
 my_int = Int(1).tag(pref=True) # Integer with a default value of 1

 #: my_text description
 my_text = Unicode().tag(pref=True)

Tasks use a common database (which is nothing else that a kind of smart
dictionary) to exchange data. If a task needs to write a value in the database
(typically all computed or measured values should be stored), the entries
should be declared by changing the default value of the database_entries
member. The provided value should be a dictionary whose values specify the
default value to write in the database. Those values can also be altered during
the edition of the task parameters through its view by assigning a new
dictionary to database_entries.

from atom.api import set_default

class MyTask(SimpleTask):
 """MyTask description.

 """
 database_entries = set_default({'val': 1})

The actual description of what the task is meant to do is contained in the
perform method which is the one you need to override (save when writing an
interfaceable task see next section). This method take either no argument, or a
single keyword argument if it can be used inside a loop in which case the
argument will be the current value of the loop. If subclassing ComplexTask
be sure to call the perform methods of all children tasks (stored in the
children member). Below is a list of some useful methods :

	write_in_database(): is used to write a value in the database. In the
database, values are stored according to the path to the task and its name,
using this method you don’t have to worry about those details you simply give
the entry name and the value.

	format_string(): this method format a string by replacing references to the
database entries by their current value.

	format_and_eval_string(): same as above but the resulting string is
evaluated.

Depending on the complexity of the task you are creating you may also need to
write a custom check method. The check method is there to ensure that
everything is properly configured and that the task can run smoothly. It is
called every time the system need to check the state of the task. The checking
of formulas (either simply formatted or formatted and evaluated) is done
automatically in the base class check method. To take advantage of it, you
simply need to tag the concerned member with ‘fmt’ (formatting only) or ‘feval’
(formatting and evaluation) :

	for formatting only the value should be True, or ‘Warn’ if the error does not
forbids to enqueue the measurement.

	for formatting and evaluation it should be a Feval instance. See example.

import numbers
from exopy.tasks.api import validators as v

class MyTask(SimpleTask):
 """MyTask description.

 """
 value1 = Unicode().tag(feval=v.Feval(types=numbers.Real,
 warn=True))

 value2 = Unicode().tag(feval=v.SkipEmpty())

 value3 = Unicode().tag(feval=v.SkipLoop())

In the above example :

	the value1 is always formatted and evaluated during the checks and the result
should be a real number. If something goes amiss it won’t be considered an
outright error but the user will be warned.

	the value2 is checked only if a non-empty formula is passed.

	the value3 is checked only if the task is not embedded in a LoopTask.

Of course in case 2 and 3 types and warn could have been set. Note that types
can be a simple type or an iterable of types.

Note

When validating on types be sure not to be too restrictive. For example
if the output should behave like a float without any other restriction
use numbers.Real that will also validate numpy.float32 where simply
checking against float would fail.

Note

The check method should not raise but add errors in the dictionary
returned as second value. To avoid duplicate keys the path and name of the
task should be used. A preformatted key can be obtained by calling the
get_error_path method.

If your task needs to run code once before the whole hierarchy execution
starts, you can over-write the prepare method which is called by the
RootTask before it starts to call its children perform method.

Note

For task using instruments, the task should inherit from InstrumentTask
that provides :

	a ‘selected_instrument’ member storing all the data needed
to start the instrument.

	a ‘check’ method ensuring that those data makes sense.

	a ‘driver’ member storing the driver instance after it has been created
(the driver is created in prepare so the driver is always initialized in
perform.)

	a ‘test_driver’ method acting as a context manager that can be used to
get a fully initialized driver to run additional checks.

3.1.2. When to use interfaces

It is quite common that due to some implementation details (such as using two
different instruments for example) you end up in a situation where you have two
almost identical tasks (up to some parameters) that basically do the same job
(or very similar ones). On top of being a naming nightmare such a situation
leads to code duplication which is something to be avoided (twice as many
tests, maintenance, etc).

To deal with such situations, Exopy has a notion of interfaces for the tasks.
The idea is to delegate the actual execution to another object: ‘the interface’
which is selected based on a parameters (the instrument to use, the method to
build an iterator, …). Basically every task whose behavior is likely to be
extended should be an interfaceable task.

Creating an interfaceable task is easy, you simply need to mix your base class
with the InterfaceableTaskMixin, as follows:

class MyTask(InterfaceableTaskMixin, SimpleTask):

 pass

For such a class, you do not need to write a perform method however you may
want to write some generic methods that the interfaces can call (once again to
avoid code duplication). If your task has a well defined default behavior
fitting most cases (or if you are turning a non-interfaceable task into an
interfaceable one), you can define a kind of default interface by creating an
i_perfom method that will act as a default interface.

To learn more about interfaces in details please read the dedicated section
Creating a new interface.

3.1.3. Creating the view

All task views should inherit from BaseTaskView which is nothing more than
a customized GroupBox. From there you are free to design your UI the way you
want. To edit member corresponding to formulas with access to the database,
note that the QtLineCompleter and QtTextCompleter widgets give
auto-completion for the database entries after a ‘{‘. You need to set the
entries_updater attribute to task.list_accessible_database_entries. If you do
so you may also want to use EVALUATER_TOOLTIP as a tool tip (tool_tip member)
so that your user get a nice explanation about what he can and cannot write in
this field. From a general point of view it is a good idea to provide
meaningful tool tips.

enamldef MyTaskView(BaseTaskView):

 QtLineCompleter:
 text := task.my_formula
 entries_updater = task.list_accessible_database_entries
 tool_tip = EVALUATER_TOOLTIP

All views have a reference to the view of the root task which provides some
useful methods to handle interfaces. It also holds a reference to the core
plugin of the application giving access to all the application commands
(see Interacting with the core of Exopy). Views of tasks that can be embedded into a LoopTask
can declare an ‘in_loop’ boolean attribute, that will be set if they are used
for an embedded task.

For more informations about the Enaml syntax please give a look at
Atom and Enaml.

Note

If your task accepts interfaces, the layout of your widget must be able to
deal with it.

Note

For tasks dealing with instruments, the view should derive from
InstrTaskView which provides three widgets :

	‘instr_label’: a simple label describing the next widget.

	‘instr_selection’: a read only field displaying the currently selected
profile and whose tool tip gives also the driver, connection and
settings, with a button next to it to open the selection dialog.

Those widgets should be integrated inside the view layout.

At this point your task is ready to be registered in Exopy, however writing a
bunch of unit tests for your task making sure it works as expected and will go
on doing so is good idea. Give a look at Writing and running tests for more details about
writing tests and checking that your tests do cover all th possible cases.

3.1.4. Registering your task

The last thing you need to do is to declare your task in a plugin manifest so
that the main application can find it. To do so your plugin should contribute
an extension to ‘exopy.tasks.declarations’ providing Tasks and/or Task
objects.

Let’s say we need to declare a single task named ‘MyTask’. The name of our
extension package (see Glossary and principle) is named ‘my_exopy_plugin’.
Let’s look at the example below:

enamldef MyPluginManifest(PluginManifest):

 id = 'my_plugin_id'

 Extension:
 point = 'exopy.tasks.declarations'

 Tasks:
 group = 'my_group'
 path = 'my_exopy_plugin'

 Task:
 task = 'my_task:MyTask'
 view = 'views.my_task:MyView'
 metadata = {'loopable': True}

We declare a single child for the extension a Tasks object. Tasks does
nothing by themselves they are simply container for grouping tasks
declarations. They have two attributes:

	‘group’: this is simply to specify that the task is part of that group. Group
are only used to filter tasks. (see Creating your own task filter)

	‘path’: when declaring a task you must specify in which module it is defined
as a ‘.’ sperated path. When declaring a path in a Tasks it will be
prepended to any path-like declaration in all children.

We then declare our task using a Task object. A Task has four attributes
but only two of them must be given non-default values :

	‘task’: this is the path (‘.’ separated) to the module defining the task. The
actual name of the task is specified after a colon (‘:’). As mentioned above
the path of all parent Tasks is preprended to this path.

	‘view’: this identic to the task attribute but used for the view definition.
Once again the path of all parent Tasks is preprended to this path.

	‘metadata’: Any additional informations about the task. Those should be
specified as a dictionary. For example tasks which can be embedded in a loop
should have an entry ‘loopable’ whose value is True.

	‘instruments’: This only apply to tasks using an instrument. In this
attribute, the supported driver should be listed. Note that if a driver is
supported through the use of an interface the driver should be listed in the
interface and not in the task. Driver should be listed by specifying their id
ie top_package.architecture.class_name. If this field is specified, the task
should be a subclass of InstrumentTask or have a selected_instrument member
similar to the one of InstrumentTask.

	‘dependencies’ : If the task has rutime dependencies other than instruments
the ids of the corresponding analysers should be listed here.

This is it. Now when starting Exopy your new task should be listed.

Note

You can also alter the metadata/instruments of a task by redeclaring it and
only specify the id of the task (not the full path) and omit the view.
This can be used for example to declare that the task support a new
instrument (added by your extension). The id of the task is formed by the
top level package declaring it followed by the name of the task. This
allows to declare tasks with the same name in different extension packages.

ex : exopy.LoopTask

3.2. Creating a new interface

Creating a new interface is very similar to creating a new task and the same
three steps exists :

	first the interface itself which holds the logic must be created.

	to allow a user to correctly parametrize the interface one or several widgets
should also be created, how those widgets will be laid out is the
responsibility of the task view.

	finally the interface must be declared in the manifest of the plugin
contributing it.

3.2.1. Minimal methods to implement

The interface should be a subclass either of TaskInterface or IInterface,
according to whether it is an interface for a task or an interface for an
interface (more on that later). Apart from that, the declaration of an
interface is similar to the one of a task. The same method needs to be
implemented and the handling of the database use the same members.

from atom.api import Unicode, Int

class MyInterface(TaskInterface):
 """MyInterface description.

 Use Numpy style docstrings.

 """
 #: my_int description
 my_int = Int(1).tag(pref=True) # Integer with a default value of 1

 #: my_text description
 my_text = Unicode().tag(pref=True)

 database_entries = set_default({'val': 1})

Note

The useful methods cited on in task section are available only on the task
not on the interface, so you need to access to them through the task (via
the task member)

Note

The check method of the interface is called before the check method of the
task hence the interface should not crash if some values expected from the
task are not available. It does not need to report those issues as the
task is supposed to do so.

3.2.2. When to use interfaces

The problem solved for tasks by using interfaces can be found also interfaces.
That’s why Exopy allow to have interfaces for interfaces without depth limit.
Declaring an interfaceable interface is done in the same way, an interfaceable
task. The only difference is the use of the InterfaceableInterfaceMixin class
instead of the InterfaceableTaskMixin.

3.2.3. Creating the view(s)

Just like for task, you need to provide a widget to edit the interface
parameters. Actually for interfaces you can provide several. Whether you need
one or several depends on the task your interface plugs into.

Because of this freedom, there is no base widget for interfaces. However to
work correctly, your views should always declare a root attribute (to which a
reference to the view of the root task is assigned) and an interface
attribute (in which a reference to the interface is stored).

enamldef MyInterfaceView(Container):

 #: Reference to the RootTask view.
 attr root

 #: Reference to the interface to which this view is bound.
 attr interface

3.2.4. Registering your interface

Registering an interface is quite similar to registering a task with the
notable difference that the interface need to know to which task or interface
it is bound.

Let’s say we need to declare an interface named MyInterface. This interface
is linked to MyTask. The name of our extension package (see Glossary and principle)
is ‘my_exopy_plugin’.
Let’s look at the example below:

enamldef MyPluginManifest(PluginManifest):

 id = 'my_plugin_id'

 Extension:
 point = 'exopy.tasks.declarations'

 Tasks:
 group = 'my_group'
 path = 'my_exopy_plugin'

 Task:
 task = 'my_task:MyTask'
 view = 'views.my_task:MyView'
 metadata = {'loopable': True}

 Interfaces:
 path = 'interfaces'

 Interface:
 interface = 'my_interface:MyInterface'
 views = ['views.my_interface:MyInterfaceView']

Here we simply added an Interface as a child of the declaration of MyTask
presented in the previous section. Because it is a child of the MyTask
declaration it will automatically infer that the parent task is MyTask.
Furthermore, both the Tasks path and the Interfaces path will be prepended
to the interface and views attributes.

Note

The group attribute of Interfaces even when specified is unused.

However when declaring an interface for an existing task, redeclaring the task
would be tedious that’s why the Interface has an extended member. This
member expect a list with the id of the task to which this interface
contributes. If the interface contribute to an interface the task and all the
intermediate interfaces should be listed (the task being the first in the
list). Contributing to the LoopTask for example would look like that for
example :

enamldef MyPluginManifest(PluginManifest):

 id = 'my_plugin_id'

 Extension:
 point = 'exopy.tasks.declarations'

 Interfaces:
 path = 'my_exopy_plugin.interfaces'

 Interface:
 interface = 'my_interface:MyInterface'
 views = ['views.my_interface:MyInterfaceView']
 extended = ['exopy.LoopTask']

Note

Interface, like Task has a metadata and an instruments members
which have the exact same functionalities. If instruments is specified,
the interface should have a selected_instrument member similar to the one
of InstrumentTask or be linked to an interface/task that does.

3.3. Creating your own task filter

As the number of tasks available in Exopy grows, finding the task you need might
become a bit tedious. To make searching through tasks easier Exopy can filter
the tasks from which to choose from. A number a basic filters are built-in but
one can easily add more.

To add a new filter you simply need to contribute a TaskFilter to the
‘exopy.tasks.filters’ extension point, as in the following example :

enamldef MyPluginManifest(PluginManifest):

 id = 'my_plugin_id'

 Extension:
 point = 'exopy.tasks.filters'

 TaskFilter:
 id = 'MyTaskFilter'
 filter_tasks => (tasks, templates):
 return sorted(tasks)[::2]

A filter need a unique id (basically its name) and a method to filter through
tasks. This method receives two dictionaries: the first ones contains the known
tasks and their associated infos, the second the templates names and their
path. Here we overrode the filter_tasks method (see Atom and Enaml for
more details about the syntax), we could also have used one of the following
specialized filters:

	SubclassTaskFilter: filter the tasks (exclude the templates) looking for
a common subclass (declared in the subclass attribute)

	MetadataTaskFilter: filter the tasks (exclude the templates) based on the
value of a metadata (meta_key is the metadata entry to look for,
meta_value the value looked for).

	GroupTaskFilter: filter the tasks (exclude the templates) belonging to a
common group (group member).

3.4. Creating your own task configurer

In some cases, the default way to configure a task before inserting it in a
task hierarchy (ie simply specifying its name) is not enough. It is for example
the case of the LoopTask for which we also need to configure its subtask if
there is one. The task configurers exist to make possible to customize the
creation of a new task. Creating one is once again similar to creating a new
task.

Note

Task configurers are not meant to fully parametrize a task, the task view
is already there for that purpose. It is rather meant to provide essential
informations necessary before including the task in a hierarchy or
parameters not meant to change afterwards.

Note

When a task configurer is specified for a task it is by default used form
all its subclasses too.

3.4.1. Minimal methods to implement

All task configurers need to inherit from PyTaskConfig, which defines the
expected interface of all configurers. When creating a new configurer two
methods need to be overwritten :

	build_task : this method is supposed to return when called a new instance of
the task being configured correctly initialized. The configurer holds a
refrence to the class of the task it is configuring.

	check_parameters : this method should set the ready flag to True if all
the parameters required by the configurer have been provided and False
otherwise. It should be called each time the value of a parameter change
(using a _post_settattr_* method).

class MyTaskConfig(PyTaskConfig):
 """Config for MyTask.

 """
 #: My parameter description
 parameter = Int()

 def check_parameters(self):
 """Ensure that parameter is positive and task has a name.

 """
 self.ready = self.parameter and self.task_name

 def build_task(self):
 """Build an instance of MyTask.

 """
 return self.task_class(name=self.task_name,
 parameter=self.parameter)

 def _post_setattr_parameter(self, old, new):
 """Check parameters each time parameter is updated.

 """
 self.check_parameters()

3.4.2. Creating the view

Just like for tasks and interfaces, you need to create a custom widget to
allow the user to parametrize the configurer. Your widget should inherit from
PyConfigView. This widget is simple container with a label and a field to
edit the task name. Furthermore it has two attributes :

	config : a reference the task configurer being edited.

	loop : a bool indicating whether or not the task is meant to be embedded in
a loop.

3.4.3. Declaring the configurer

Finally you must declare the config in a manifest by contributing an
extension to the ‘exopy.tasks.configs’ extension point. This is identical to
how tasks are declared but relies on the TaskConfigs (instead of Tasks) and
TaskConfig (instead of Task) objects. The base task class for which the
configurer is meant should be returned by the get_task_class method.

3.5. More on tasks internals

3.5.1. Parallel execution, waiting, stopping and pausing

For any task one can specify a number of parameters concerning how the
perform() is called :

	should the task be executed in another thread (ie in parallel) of the rest of
the execution. This is controlled by the value of the parallel attribute.
Threads are grouped by pool to simplify the synchronization issues.

	should the task wait on any other task before running. This is controlled by
the wait attribute. One can specify whether to wait for all threads to
proceed or only on some pools (or to wait for all threads save the ones in
some pools).

	should one be able to stop the execution of the whole hierarchy or set it on
pause when calling this task.

To give that flexibility, the actual perform method of the task is wrapped
when running the check method and it is partly why it is vital to always call
the BaseTask check method.

Note

First the condition for stopping/pausing is checked, then the task wait for
other to terminate and finally the task is executed in parallel if
parametrized to do so.

Note

Please note that if waiting from a thread one must be careful not to wait
on the pool from which it is part. For example, if a ComplexTask is
performed in parallel all child task must be careful not to wait upon the
pool to which the ComplexTask belong.

3.5.2. Database access and exceptions

As stated above, tasks use a common database to exchange data. This database is
organized hierarchically like the tasks themselves. To each ComplexTask, will
be associated a node in the database. Each task can write in the database in
the node of their parent (ie a ComplexTask does not write into its own node,
only the RootTask does this).

By default a task can only access to the entries written in the same node, it
can write or in nodes higher in the hierarchy. However, it is sometimes
desirable to relax this constraint. One such case is when a ComplexTask is
used to isolate a complex operation, but following tasks need to access results
of some inner tasks of the previously cited ComplexTask. To do so, the
database has a notion of access exceptions, which basically make an entry
appears on the node its original node (and exceptions can be chained to go up
as many times as necessary).

From the developer point of view, this does not change anything, as he does not
need to do anything in the task to allow this.

3.5.3. Shared resources

The database is the right way to exchange data such as numbers and arrays
between tasks. However some tasks can also access to other kind of resources
such as instruments or file descriptors. Generally such resources need to be
properly initialized and more importantly finalized. Furthermore they can be
shared by multiple tasks, suggesting a thread-safe way to store and manipulate
them. As a task is not aware of whether or not it will be called again in the
future, it cannot properly close its resource (as closing and re-opening a
resource repeatedly is most likely time costly). That’s why such resources
should be stored in special containers in the resources attributes of the
RootTask. The resources attributes is a dictionary, the keys allowing
to easily retrieve the wanted container.

For each kind of object to store, one should create a subclass of
ResourceHolder implementing the release and reset methods (look at the
API docs for more details). When first creating a resource, check whether
or not the right container already exists in the resources attribute or not,
and store the newly created resource.

At the end of the perform method of the RootTask, all the stored resources
are properly released avoiding any corruption.

3.5.4. Edition mode vs running mode

In some places in the code, one may find references to the notion of running
mode for the database. This mode should be activated when the edition of the
tasks hierarchy is over as it allows to speed up a number of operations. In
running mode, the databased is flattened to allow fast repeated access to the
same entry by first querying its index and then using that index for getting
the value. Because of this, no entry can be added or removed from the database.
Another optimization is performed by caching a pre-evaluated version of all
formulas used in tasks.

4. Instruments

Exopy is designed to run physics experiments and such experiments requires more
than just a computer. One can need to apply a DC voltage, measurement a current,
… All this requires instruments that needs to be interfaced and controlled.

The following sections will dicsuss how Exopy handles instruments, but not how
to write drivers as Exopy let the user free to use the framework of its choice
to do this.

Contents

	Instruments

	Instruments within Exopy

	Registering a driver

	Registering a user

	Registering a starter

	Registering a connection

	Registering a settings

	Registering a manufacturer alias

4.1. Instruments within Exopy

Instruments in Exopy are managed by a dedicated plugin ensuring that a single
part of the application use a given instrument at any time, in order to avoid
conflict. Before using an instrument, the plugin planning to use the instrument
needs to request the right to do so. This right can be refused if another part
of the application, that cannot stop using it, is currently using it. Only
plugin which declare that they use instrument can request the right to use one.
See the Registering a user section, to know how to declare that a plugin is an
instrument user.

When the privilege to use an instrument is granted, the instrument plugin
send back the ‘profile’ of the instrument. The profile of an instrument holds
all the information relative to how to proceed to open the connection to that
instrument :

	model_id : the instrument model which allow to determine to what kind of
instrument this profile can be used to connect to.

	connections : information such as the VISA address of the instrument, or any
other kind of way to identify the instrument when opening the connection.
As often an instrument can be adressed through different protocols (GPIB,
USB, …), the profile regroup all those, so that the unicity of access can
be guaranteed.

	settings : information specific for the driver that one wants to use to
establish the connection. For example PyVISA, allows to select between
different backends, and the driver could pass that information along.

Note

A connection is mandatory to start a driver but the settings can be
ignored.

All those parameters are stored in ‘.instr.ini’ file that can be edited through
the GUI. It is hence necessary to add to Exopy the proper widget to edit the
connections and settings (in the following those terms will often refer to
the widget rather than the data in the profile).
Settings are quite specific to the ‘architecture’ of the driver and this is
fine, however connections are not : the VISA address of an instrument does not
depend on the driver architecture. Hence connections should not be designed
with a particular architecture of driver in mind.
However not all driver ‘architectures’ use the same procedure to initialize a
driver and later on close the connection. Exopy allows for such discrepencies
using starters. Starters are simply intermediate taking the driver class, the
connection and settings to use and taking care of the
initialization/finalization.

The following section will treat how to register a new driver (which should be
enough in most cases), a new instrument user, a new starter, a new connection,
and a new settings.

Note

When writing a task using an instrument, one does not have to worry about
the profile selection and the proper use of the starter as the provided
InstrumentTask and InstrTaskView takes care of it.

4.2. Registering a driver

Registering a driver is the most current operation of the ones presented. To do
so you need to do is to declare your driver in a plugin manifest so
that the main application can find it. Your plugin should contribute
an extension to ‘exopy.instruments.drivers’ providing Drivers and/or Driver
objects.

Let’s say we need to declare a single driver named ‘MyDriver’. The name of our
extension package (see Glossary and principle) is named ‘my_exopy_plugin’.
Let’s look at the example below:

enamldef MyPluginManifest(PluginManifest):

 id = 'my_plugin_id'

 Extension:
 point = 'exopy.instruments.drivers'

 Drivers:
 path = 'my_exopy_plugin'
 manufacturer = 'MyManufacturer'

 Driver:
 driver = 'my_driver:MyDriver'
 architecture = 'MyArchitecture'
 model = 'MyModel'
 kind = 'DC source'
 starter = 'my_starter_id'
 connections = {'VisaTCPIP': {'resource_class': 'SOCKET',
 'port': 10000},
 'VisaUSB': {'resource_class': 'INSTR',
 'manufacturer_ID': '0xB49',
 'model_code': '0x46'}
 }

We declare a single child for the extension a Drivers object. Drivers does
nothing by themselves they are simply container for grouping drivers
declarations. They can be nested to any level. They have the following
attributes which, all save path, are also present in Driver. The values stored
will be accessed if Driver does not provide a value for a specific field :

	‘path’: when declaring a driver you must specify in which module it is
defined as a ‘.’ sperated path. When declaring a path in a Drivers it will
be prepended to any path-like declaration in all children.

	‘architecture’: the architecture of all children drivers. For example if you
are using the Lantz framework to write your drivers, write ‘Lantz’. This name
will be used when multiple drivers are available for the same model of
instruments.

	‘manufacturer’: the manucfacturer of all children drivers.
For example : Keysight (please note that for manufacturer like Keysight,
whose name changed through time aliases can be declared Registering a manufacturer alias,
in those cases the name used internally will always be the main name.)

	‘serie’: some instruments exists within a serie of similar instruments, and
the serie might be more descriptive than the model (example : Keysight EXG,
MXG, and EXG microwave sources). For such instruments the serie field should
set.

	‘kind’: the kind of instrument. Allowed values are : ‘Other’, ‘DC source’,
‘AWG’, ‘RF source’, ‘Lock-in’, ‘Spectrum analyser’, ‘Multimeter’.
Those values are defined in ‘exopy.instruments.infos’. This is used only for
filtering so this field is not mandatory.

	‘starter’: Id of the starter to use with this driver.

	‘connections’: Ids and default values for the supported connections (the
meaningful default values should be documented by the connections).

	‘settings’: Ids and default values for the supported settings (the
meaningful default values should be documented by the settings).

We then declare our driver using a Driver object. A Driver has two
additional attributes compared to the one mentionned for Drivers :

	‘driver’: this is the path (‘.’ separated) to the module defining the driver.
The actual name of the driver is specified after a colon (‘:’). As mentioned
above the path of all parent Drivers is preprended to this path.

	‘model’: the model of instrument this driver has been written for. If a
driver matches several models (which is unlikely as there are always some
differences) it should be declared twice.

This is it. Now when starting Exopy your new driver should be listed and if not
driver was previously declared for this model of instrument the model should
have been added.

Warning

The spelling of manufacturer, serie, model, architecture should be
consistent. So do not use abbreviated names and always start the name by a
capital letter. Look at existing code and contact the maintainers in cases
of doubt.

Note

A driver is identified by its origin package, its architecture and the
class name. <origin_package>.<architecture>.<class_name>

4.3. Registering a user

As explained in the beginning only declared users can request the use of
instruments. This is so because the manager needs to know whether or not the
user is susceptible to stop using a driver if requested (and how to send it
such a request).

Declaring an instrument user is straightforward. To do so, you must contribute
an InstrUser object to the ‘exopy.instruments.users’ extension point.
An InstrUser must have :

	an ‘id’ which should be unique and is generally the id of the plugin using
instruments

	a ‘policy’ which is either ‘releasable’ or ‘unreleasable’ depending on
whether the user can accept to relinquish the use of an instrument if asked.

	a ‘release_profiles’ declarative function which should be overridden if the
policy is ‘releasable’.

4.4. Registering a starter

The goal of starters is to allow a transparent use of instrument no matter
their architecture. To declare a starter, you must contribute a Starter
object to the ‘exopy.instruments.starters’ extension point.
A Starter must declare :

	an ‘id’ which should be unique and is the one used when declaring a driver.

	a ‘description’ detailing with what kind of driver this starter should be
used.

	a ‘starter’ which should an instance of a subclass of BaseStarter and
implement the following methods.

Methods of BaseStarter :

	a ‘start’ declarative function in charge of starting a driver. The
driver returned should be ready for communication.

	a ‘stop’ declarative function responsible for cleanly closing the
communication.

	a ‘check_infos’ declarative function used to test that a combination of
(driver, connection, settings) does allow to open a connection. This method
should not raise.

	a ‘reset’ declarative function responsible for resetting the driver after
a suspected modification by the user.

4.5. Registering a connection

As previously explained, the fields of a connection should be mapped to real
protocol used for communication and not a specific implementation. Hence the
VISA connections provided in Exopy should cover most usages. However it is
possible to add other connections to cover less frequent cases.

To do so, you must contribute a Connection object to the
‘exopy.instruments.connections’ extension point. A Connection must declare :

	an ‘id’ which should be unique and is the one used when declaring a driver.

	a ‘description’ detailing the possible default values that can be specified
when declaring a driver.

	an ‘new’ declarative function which should create a new widget (inheriting
from BaseConnection) used to edit the connection data. The ‘defaults’
dictionary should be used to properly initialize the widget. Note that all
values should be expected as strings. The ‘read_only’ attributes should be
set after creation to avoid trouble (hence you should use << when reading
this attribute value in the view).

4.6. Registering a settings

Contrary to connections settings are much more closely tied to a particular
architecture of driver. To declare a new settings, you must contribute a
Settings object to the ‘exopy.instruments.settings’ extension point. A
Settings must declare :

	an ‘id’ which should be unique and is the one used when declaring a driver.

	a ‘description’ detailing the possible default values that can be specified
when declaring a driver.

	an ‘new’ declarative function which should create a new widget (inheriting
from BaseSettings) used to edit the settings data. The ‘defaults’
dictionary should be used to properly initialize the widget. Note that all
values should be expected as strings. The ‘read_only attributes should be
set after creation to avoid trouble (hence you should use << when reading
this attribute value in the view).

4.7. Registering a manufacturer alias

Some instruments’ manufacturer changed name during their history, and hence
the same instrument can be attributed to two different manufacturers. To deal
with that kind of cases, Exopy allows to declare aliases to a manufacturer name.
When such aliases are declared, any alias can be used when declaring the driver
but only the ‘real’ name will be used internally (in profile for example).

To declare a manufacturer alias, you must contribute a ManufacturerAlias to
the ‘exopy.instruments.manufacturer_aliases’ extension point. A
ManufacturerAlias must declare :

	an ‘id’ which should be the real manufacturer name.

	an ‘aliases’ list.

Manufacturer names (real and aliases) should all be capitalized.

Note

The ‘trivial’ case of Keysight/Agilent/HP is already taken care of in Exopy.

5. Writing and running tests

Unit tests are one of the few ways to discover bugs beforehand and to prevent
regressions when updating the code base. Exopy aims at being covered at 100%
(meaning that tests must run every single line of code at least once). Coverage
is not always a perfect metric as it is not because a line does not crash that
the code does what it is meant to but it is a good indicator. Actually GUI
elements written in Enaml are not tracked by the coverage, BUT they should be
tested nonetheless.

Note

The test suite is not distributed with pip packages or conda packages as it
is solely a developing tool. However some tools used in testing and that
may be useful to other packages can be found under the ‘testing’ package.

Note

Running the test suite requires :

	pytest > 3.3

	pytest-cov

	pytest-timeout

	enaml_coverage_plugin
(https://github.com/MatthieuDartiailh/enaml_coverage_plugin)

Contents

	Writing and running tests

	Writing test using pytest

	Assertions

	Fixtures

	Running the test suite

	Checking coverage

5.1. Writing test using pytest

The library used for writing the tests for Exopy is pytest. Writing a test is as
easy as creating a module whose name starts by ‘test_’ and inside write
functions themselves prefixed by ‘test_’. Inside a test function the correct
behaviour of the program should be tested (using assertions as described in the
next section). Test should focus on testing elementary operation at the highest
level possible (avoiding direct access to private methods is likely to make the
test easier to maintain if the code changes, note that this however not always
possible).

5.1.1. Assertions

Python provides the ‘assert’ statement to check that a boolean is True. Usually
one should provide also an error message describing why the assertion failed.
One very interesting feature of pytest is that it can analyse assertions and
provide automatically detailed error reporting in case of failure.

So testing a function which should return one is as easy as :

def test_my_function():

 assert my_function() == 100%

Sometimes a function should raise an exception in a given situation and it
might desirable to check that it indeed do so. Pytest provides a context
handler to handle this case.

def test_my_other_function():

 with pytest.raises(ValueError):
 my_other_funtion(-1)

Another case which often arises in Exopy if the need to handle a dialog opened
by the function. To handle this case one can use the handle_dialog() context
manager found in ‘exopy.testing.util’ (note a bunch of other useful function
are defined in this module):

def my_function_dialog():

 def handler(dialog):
 # Do something with the dialog
 pass

 with handle_dialog('accept', handler):
 my_function_dialog()

The first argument indicates whether to accept or reject the dialog, and the
second allows to modify the attributes of the dialog. Both arguments are
optional.

5.1.2. Fixtures

Usually when testing the methods of an object, all tests have in common some
initialisation steps and sometimes also some finalisation steps to clean up
after the tests.

To avoid duplicating a lot of code Pytest provides fixture functions. A fixture
function is imply a function decorated with ‘@pytest.fixture’ (or
‘@pytest.yield_fixture’) which, when passed as argument of a test function,
will be called automatically by pytest. Standard fixture simply gives access to
a value, yield_fixture allow to cleanup after the test execution. Note that a
fixture can rely on another fixture.

@pytest.fixture
def tool():
 return 1

@pytest.yield_fixture
def clean_tool(tool):
 yield tool # This will pass 1 to the test function
 del tool # This is executed after the test function (no matter the errors)

def test_my_function(clean_tool):
 assert clean_tool == 1

Pytest provides some useful fixtures :

	monkeypatch : an object with a setattr method to modify some code and be sure
theat the modification will be removed before running the next text.

	tmpdir : a temporary directory (should be converted to unicode before passing
it to ‘os’ module functions)

Exopy add some other :

	app : fixture ensuring that the Application is running (mandatory for testing
widgets).

	windows : fixtures closing all opened windows after a test.

	app_dir : return the automatically set path for the application

	dialog_sleep : return the time to sleep as specified by the –exopy-sleep
option

The other fixtures can be found in the testing package. Each subpackage usually
defining a fixture.py module in which those are defined.

If a fixture need to be available in multiple test module it can be defined in
a conftest.py module inside the package. If the fixture can be of use to other
packages it should be defined in a fixtures.py module inside the testing
package.

Note

If a fixture is defined in a fixtures.py module, one should add a
‘pytest_plugin’ variable at the top of the test module with a list of all
the module containing fixtures to load (modules should be specified using
their full path).

ex : pytest_plugins = [str(‘exopy.testing.instruments.fixtures’)]

Note

More details about fixtures can be found in the pytest documentation_

5.2. Running the test suite

To run the test suite, one should invoke pytest from the command line. First
the command line should be made to point at the root of the ‘exopy’ folder
(containing both the ‘exopy’ and the ‘tests’ packages). Then one can invoke
pytest using the ‘py.test tests’ command.

To run only tests linked to a limited part of the application one can specify
the path of the packages containing the tests or even the module.

>>> py.test tests/measurement/monitors

To run only a single function one should specify specify its name after the
name of the module and separate them using ‘::’.

>>> py.test tests/measurement/test_measurement.py::test_tool_handling

Of course pytest can take command line arguments, please refer to the pytest
documentation_ for more details.

Currently, Exopy add a single argument ‘–exopy-sleep’ which fix the time return
by the dialog_sleep feature and can hence allow to visually test GUI elements.

5.2.1. Checking coverage

Checking coverage is just a matter of invoking pytest with the right arguments.
First one should specify the packages/modules whose coverage should be
monitored. This is done using the ‘–cov’ argument as follow :

>>> py.test tests --cov exopy

By default the format under which coverage is reported is not extremely useful,
so one should specify ‘–cov-report’ to be either ‘term-missing’ (that will
list the line not covered by the tests in the console) or ‘html’ which will
produce a report in html which can be access by opening the created index.html
file.

>>> py.test tests --cov exopy --cov-report term-missing

6. Style guide

The uniformity of the coding style in a large project is of paramount
importance to make maintenance easier. Exopy follows closely PEP8
recommendations which can be found here (PEP8 [https://www.python.org/dev/peps/pep-0008/]). One can automatically
format code using the autopep8 tool. Some of those rules and some additional
remarks are detailed below.

Contents

	Style guide

	Header

	Line length

	Docstrings

	Naming conventions

	Import formatting

	Python version compatibility

6.1. Header

All files part of the Exopy should start with the following header :

-*- coding: utf-8 -*-

Copyright 2015-2018 by Exopy Authors, see AUTHORS for more details.
#
Distributed under the terms of the BSD license.
#
The full license is in the file LICENCE, distributed with this software.

New contributors should add their name to the AUTHORS file at the root of the
project.

Immediately following this header one should find the module docstring.

6.2. Line length

PEP8 [https://www.python.org/dev/peps/pep-0008/] specifies that lines should at most 79 characters long and this
rule is strictly enforced throughout Exopy (in code and in comments).
This makes the code much easier to read and on work on (one does not have to
resize its editor window to accommodate long lines).

Backslashes should be used sparingly. To write an expression on multiple lines
the preferred method should be to surround it with parenthesis.

Note

Long strings can use triple quotes or the following trick to avoid
indentation issues :

msg = ('A very very long string, taking much more than a single line '
 'to write.')

The Python interpreter will automatically concatenate both strings when
reading the file. Please that it will not insert any space or line feed
(hence the space after ‘line’).

6.3. Docstrings

All functions, classes and methods should have a docstring (even private
methods). Exopy use the Numpy-style [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] docstrings which are human readable.

As most classes inherits from Atom and must therefore declare explicitly their
members, those should be documented using a comment above them starting by
‘#:’. This makes the code easier to read than using the ‘Attributes’ section in
the docstring and is picked up by the API documentation generator.

6.4. Naming conventions

The naming conventions taken from PEP8 specifications are the following :

	local variables and functions should have all lowercase names and use ‘_’ to
separate different words. ex : my_variable

	class names should start with a capital letter and each new word should also
start with one. ex : MyClass

	private variables or methods should start with a single ‘_’

	module constants should be in uppercase and use ‘_’ to separate different
words. ex : MY_CONSTANT

6.5. Import formatting

Imports should be at the top of the file (after the module docstring) save in
special cases. They should be group as follow (each group separated from the
following by a blank line) :

	special imports for Python 2/3 compatibility

	standard library imports

	third parties libraries imports

	relative imports

In each section the ‘import x’ stements should always come before the
‘from a import b’ statements.

Imports of .enaml files should come after any other imports.

6.6. Python version compatibility

At the time being Exopy is tied to Python 2 because of Enaml. But as this is
likely to change in the future all code should be written in a Python 2/3
compatible manner. All module should have the following line after their
docstring :

from __future__ import (division, unicode_literals, print_function,
 absolute_import)

Other discrepancies between Python 2 and 3 are handled using the future [http://python-future.org/]
package. Please refer to its documentation for more details.

7. Atom and Enaml

Contents

	Atom and Enaml

	Atom

	Enaml

7.1. Atom

Atom allow to create memory efficient python object by specifying in the class
the members (rather than allowing dynamic attributes). Atom can also be used to
add type checking to object members. This goes against the notion of
duck-typing but tends to make the code easier to read. Note also that metadata
can be added to a member using the :py:meth:tag method. Metadata are
extensively used in Exopy.

Note

For clarity sake and Python2/3 compatibility, Unicode should be used
instead of Str.

7.2. Enaml

FAQS

API Documentation

Subpackages

	app
	Subpackages

	Submodules

	instruments
	Subpackages

	Submodules

	tasks
	Subpackages

	Submodules

	testing
	Subpackages

	Submodules

	utils
	Subpackages

	Submodules

Submodules

	exopy.version module

exopy.app package

Subpackages

	dependencies
	Submodules

	errors
	Submodules

	log
	Submodules

	packages
	Submodules

	preferences
	Submodules

	states
	Submodules

Submodules

	exopy.app.app_extensions module

	exopy.app.app_manifest module

	exopy.app.app_plugin module

exopy.app.dependencies package

Submodules

	exopy.app.dependencies.dependencies module

	exopy.app.dependencies.manifest module

	exopy.app.dependencies.plugin module

exopy.app.dependencies.dependencies module

Extension used to declared dependencies on some objects for execution or
rebuilding of an existing structure.

Dependencies allows to collect before hand (when the full workbench is
available) as set of of objects (classes, definitions, …) and then use it
later to in a workbench free environment to rebuild or execute some code.
Those mechanisms are used to collect task classes (build) and
also drivers classes and intsrument profiles (runtime)

	
class exopy.app.dependencies.dependencies.BuildDependency(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Build dependencies are used to rebuild exopy structures.

If a plugin manage objects used to build a structure that can be saved to
a config file it should declare a BuildDependency extension and contribute
it to the ‘build-dependencies’ extensions point of the
DependenciesPlugin (exopy.app.dependencies).

	
id

	Unique id for this extension. Should match the dep_type attribute value
of the object it is meant for.

	
analyse(workbench, obj, getter, dependencies, errors)

	Analyse the identified build dependencies and list runtime ones.

This method should never raise an error but rather use the errors
dictionary to signal any issue.

	Parameters

	
	workbench (enaml.workbench.api.Workbench) – Reference to the application workbench.

	obj – Object whose build dependencies should be analysed and runtime
ones identified.

	getter (callable(obj, name)) – Callable to use to access obj attribute. Attribute must be accessed
using this function rather than the usual ‘.’ syntax as the passed
object might be a dictionary like object.

	dependencies (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set in which to list the dependencies.

	errors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary in which to write the errors that occured during
collection.

	Returns

	runtime_collectors – List of runtime dependencies that this object have.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
validate(workbench, dependencies, errors)

	Validate that all the dependencies exists.

This method is not intended to query the actual dependencies but
simply to assert that they are theoretically available from the manager
plugin.
This method should never raise an error but rather use the errors
dictionary to signal any issue.

	Parameters

	
	workbench (enaml.workbench.api.Workbench) – Reference to the application workbench.

	dependencies (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set of depedencies to validate.

	errors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary in which to write the errors that occured during
collection.

	
collect(workbench, dependencies, errors)

	Collect build dependencies.

This method should never raise an error but rather use the errors
dictionary to signal any issue.

	Parameters

	
	workbench (enaml.workbench.api.Workbench) – Reference to the application workbench.

	dependencies (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary whose values are initialised to None listing the
dependencies to collect.

	errors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary in which to write the errors that occured during
collection.

	
class exopy.app.dependencies.dependencies.RuntimeDependencyAnalyser(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Runtime dependencies are ressources needed at runtime by some
structure (ex: tasks using instrument need at runtime the driver class and
the instrument profile to work correctly).

	
id

	Unique id for this extension.

	
collector_id

	Id of the collector that should be used to collect the dependencies
discovered during analysis.

	
analyse(workbench, obj, dependencies, errors)

	Analyse the identified runtime dependencies of an object.

This method should never raise an error but rather use the errors
dictionary to signal any issue.

	Parameters

	
	workbench (enaml.workbench.api.Workbench) – Reference to the application workbench.

	obj – Object whose runtime dependencies should be analysed.

	dependencies (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set in which to list the dependencies.

	errors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary in which to write the errors that occured during
collection.

	
class exopy.app.dependencies.dependencies.RuntimeDependencyCollector(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Runtime dependencies are ressources needed at runtime by some
structure (ex: tasks using instrument need at runtime the driver class and
the instrument profile to work correctly).

	
id

	Unique id for this extension.

	
validate(workbench, dependencies, errors)

	Validate that all the dependencies exists.

This method should try to access the dependencies but simply assert
that they exist.
This method should never raise an error but rather use the errors
dictionary to signal any issue.

	Parameters

	
	workbench (enaml.workbench.api.Workbench) – Reference to the application workbench.

	dependencies (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set of depedencies to validate.

	errors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary in which to write the errors that occured during
collection.

	
collect(workbench, owner, dependencies, unavailable, errors)

	Collect the identified runtime dependencies.

This method should never raise an error but rather use the errors
dictionary to signal any issue.

If some of them requires some kind of permission, this permission
should be required.

	Parameters

	
	workbench (enaml.workbench.api.Workbench) – Reference to the application workbench.

	owner (unicode) – Calling plugin id . Used for some runtime dependencies needing to
know the ressource owner.

	dependencies (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary whose values are initialised to None listing the
dependencies to collect.

	unavaible (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set of resources that could not be provided because they are
currently unavailable.

	errors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary in which to write the errors that occured during
collection.

	
release(workbench, owner, dependencies)

	Release resources previously collected.

This makes sense only if the ressource requires some kind of
permissions.

	Parameters

	
	workbench – Reference to the application workbench.

	owner (unicode) – Id of the plugin releasing the ressources.

	dependencies (iterable) – Iterable of dependencies that are no longer needed.

exopy.app.dependencies.manifest module

Dependencies plugin manifest.

	
class exopy.app.dependencies.manifest.DependenciesManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Manifest for the plugin handling object dependencies.

	
exopy.app.dependencies.manifest.dependencies_plugin_factory()

	Factory function for the DependenciesManagerPlugin.

exopy.app.dependencies.plugin module

Plugin handling dependencies declarations.

	
exopy.app.dependencies.plugin.clean_dict(mapping)

	Keep only the non False entry from a dict.

	
class exopy.app.dependencies.plugin.BuildContainer

	Bases: atom.atom.Atom

Class used to store infos about collected build dependencies.

	
dependencies

	Dictionary storing the collected dependencies, grouped by id.

	
errors

	Dictionary storing the errors which occured during collection.

	
clean()

	Remove all empty entries from dictionaries.

	
class exopy.app.dependencies.plugin.RuntimeContainer

	Bases: exopy.app.dependencies.plugin.BuildContainer

Class used to store infos about collected runtime dependencies.

	
unavailable

	Runtime dependencies which exists but are currently used by another
part of the application and hence are unavailable.

	
clean()

	Remove all empty entries from dictionaries.

	
class exopy.app.dependencies.plugin.DependenciesPlugin

	Bases: enaml.workbench.plugin.Plugin

Dependencies manager for the application.

	
build_deps

	Contributed build dependencies.

	
run_deps_analysers

	Contributed runtime dependencies analysers.

	
run_deps_collectors

	Contributed runtime dependencies collectors.

	
start()

	Start the manager and load all contributions.

	
stop()

	Stop the manager.

	
analyse_dependencies(obj, dependencies=['build'])

	Analyse the dependencies of a given object.

The object must either be a configobj.Section object or have a traverse
method yielding the object and all its subcomponent suceptible to add
more dependencies.

	Parameters

	
	obj (object [https://docs.python.org/3/library/functions.html#object]) – Obj whose dependencies should be analysed.

	dependencies ({['build'], ['runtime'], ['build', 'runtime']}) – Kind of dependencies which should be gathered. Note that only
build dependencies can be retrieved from a configobj.Section
object.

	Returns

	dependencies – BuildContainer, RuntimeContaineror tuple of both according to
the requested dependencies.

	Return type

	BuildContainer | RuntimeContainer | tuple

	
validate_dependencies(kind, dependencies)

	Validate that a set of dependencies is valid (ie exists).

	Parameters

	
	kind ({'build', 'runtime'}) – Kind of dependency to validate.

	dependencies (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of dependencies sorted by id. This is typically the
content of the dependencies attribute of BuildContainer or
RuntimeContainer.

	Returns

	
	result (bool) – Boolean indicating whether or not all dependencies are valid.

	errors (dict) – Dictionary containing the errors which occured. Those are stored
by dependency id and by dependency.

	
collect_dependencies(kind, dependencies, owner=None)

	Collect that a set of dependencies.

For runtime dependencies if permissions are necessary to use a
dependence they are requested and should released when they are no
longer needed.

	Parameters

	
	kind ({'build', 'runtime'}) – Kind of dependency to validate.

	dependencies (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of dependencies sorted by id. This is typically the
content of the dependencies attribute of BuildContainer or
RuntimeContainer.

	owner (unicode, optional) – Calling plugin id. Used for some runtime dependencies needing to
know the ressource owner.

	Returns

	dependencies – BuildContainer, RuntimeContainer or tuple of both according to
the requested dependencies.

	Return type

	BuildContainer | RuntimeContainer | tuple

	
release_runtimes(owner, dependencies)

	Release runtime dependencies previously acquired (collected).

	Parameters

	
	owner (unicode) – Id of the plugin releasing the ressources.

	dependencies (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing the runtime dependencies to release organised
by id.

exopy.app.errors package

Submodules

	exopy.app.errors.errors module

	exopy.app.errors.manifest module

	exopy.app.errors.plugin module

	exopy.app.errors.widgets module

exopy.app.errors.errors module

Declarations for the extensions to the error plugin.

	
class exopy.app.errors.errors.ErrorHandler(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Handler taking care of certain kind of errors.

	
id

	Id of the error. When signaling errors it will referred to as the kind.

	
description

	Short description of what this handler can do. The keyword for the
handle method should be specified.

	
handle(workbench, infos)

	Handle the report by taking any appropriate measurement.

The error should always be logged to be sure that a trace remains.

	Parameters

	
	workbench – Reference to the application workbench.

	infos (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list]) – Informations about the error to handle. Should also accept a list
of such description. The format of the infos should be described in
the description member.

	Returns

	widget – Enaml widget to display as appropriate in a dialog.

	Return type

	enaml.widgets.api.Container

	
report(workbench)

	Provide a report about all errors that occurred.

Implementing this method is optional.

	Returns

	widget – A widget describing the errors that will be included in a dialog
by the plugin. If None is returned the report is simply ignored.

	Return type

	enaml.widgets.api.Container

exopy.app.errors.manifest module

Plugin centralizing the application error handling.

	
class exopy.app.errors.manifest.ErrorsManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Plugin centralizing the handling of errors.

	
exopy.app.errors.manifest.errors_plugin_factory()

	Factory function for the LogPlugin.

exopy.app.errors.plugin module

Plugin centralizing the application error handling.

	
class exopy.app.errors.plugin.ErrorsPlugin

	Bases: enaml.workbench.plugin.Plugin

Plugin in charge of collecting of the errors.

It will always log the errors, and will notify the user according to their
type.

	
errors

	Errors for which a custom handler is registered.

	
start()

	Collect extensions.

	
stop()

	Stop the extension collector and clear the list of handlers.

	
signal(kind, **kwargs)

	Signal an error occured in the system.

	Parameters

	
	kind (unicode or None [https://docs.python.org/3/library/constants.html#None]) – Kind of error which occurred. If a specific handler is found, it is
used, otherwise the generic handling method is used.

	**kwargs – Arguments to pass to the error handler.

	
report(kind=None)

	Show a widget summarizing all the errors.

	Parameters

	kind (unicode, optional) – If specified only the error related to the specified kind will
be reported.

	
enter_error_gathering()

	In gathering mode, error handling is differed till exiting the mode.

	
exit_error_gathering()

	Upon leaving gathering mode, errors are handled.

If error handling should lead to a window display, all widgets are
collected and displayed in a single window.
As the gathering mode can be requested many times, the errors are only
handled when this method has been called as many times as its
counterpart.

	
install_excepthook()

	Setup a global sys.excepthook for a nicer user experience.

The error message suggest to the user to restart the app. In the future
adding an automatic bug report system here would make sense.

exopy.app.errors.widgets module

Widgets used to display errors messages received by the plugin.

	
class exopy.app.errors.widgets.BasicErrorsDisplay(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Display the errors as a list with a panel for the message.

	
errors

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
kind

	

	
selected

	

	
class exopy.app.errors.widgets.ErrorsDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog presenting all the errors reported in a notebook.

	
errors

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.app.errors.widgets.HierarchicalErrorsDisplay(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Widget used to display a nested dictionary.

Keys must always be unicode and values should unicode or dict.

	
errors

	

	
kind

	

	
selected

	

	
class exopy.app.errors.widgets.UnknownErrorWidget(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Widget used to display messages for errors for which no specific handler
was found.

	
kind

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
msg

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
exopy.app.errors.widgets.format_error(node)

	Build a nice string representation of a node.

exopy.app.log package

Submodules

	exopy.app.log.manifest module

	exopy.app.log.plugin module

	exopy.app.log.tools module

exopy.app.log.manifest module

Log plugin manifest.

	
class exopy.app.log.manifest.LogManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Manifest for the plugin handling logging for an application.

	
exopy.app.log.manifest.log_plugin_factory()

	Factory function for the LogPlugin.

	
exopy.app.log.manifest.start_logging(workbench, cmd_args)

	Start logging system and register default handlers.

exopy.app.log.plugin module

Log plugin definition.

	
class exopy.app.log.plugin.LogPlugin

	Bases: enaml.workbench.plugin.Plugin

Plugin managing the application logging.

	
handler_ids

	List of installed handlers.

	
filter_ids

	List of installed filters.

	
gui_model

	Model which can be used to display the log in the GUI. It is associated
to a handler attached to the root logger.

	
add_handler(id, handler=None, logger='', mode=None)

	Add a handler to the specified logger.

	Parameters

	
	id (unicode) – Id of the new handler. This id should be unique.

	handler (logging.Handler [https://docs.python.org/3/library/logging.html#logging.Handler], optional) – Handler to add.

	logger (unicode, optional) – Name of the logger to which the handler should be added. By default
the handler is added to the root logger.

	mode ({'ui', }, optional) – Conveninence to add a simple logger. If this argument is specified,
handler will be ignored and the command will return useful
references (the model to which can be connected a ui for the ‘ui’
mode).

	Returns

	refs – List of useful reference, empty if no mode is selected.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
remove_handler(id)

	Remove the specified handler.

	Parameters

	id (unicode) – Id of the handler to remove.

	
add_filter(id, filter, handler_id)

	Add a filter to the specified handler.

	Parameters

	
	id (unicode) – Id of the filter to add.

	filter (object [https://docs.python.org/3/library/functions.html#object]) – Filter to add to the specified handler (object implemeting a filter
method).

	handler_id (unicode) – Id of the handler to which this filter should be added

	
remove_filter(id)

	Remove the specified filter.

	Parameters

	id (unicode) – Id of the filter to remove.

	
set_formatter(handler_id, formatter)

	Set the formatter of the specified handler.

	Parameters

	
	handler_id (unicode) – Id of the handler whose formatter shoudl be set.

	formatter (Formatter) – Formatter for the handler.

exopy.app.log.tools module

This module defines some tools to make easier the use of the logging module.

It provide tools to seamlessly convert stream information into log record so
that any print can get recorded, and others to process log emitted in a
subprocess.

	Contains

	
	StreamToLogRedirector
	Simple class to redirect a stream to a logger.

	QueueHandler
	Logger handler putting records into a queue.

	GuiConsoleHandler
	Logger handler adding the message of a record to a GUI panel.

	QueueLoggerThread
	Thread getting log record from a queue and asking logging to handle
them.

	
class exopy.app.log.tools.StreamToLogRedirector(logger, stream_type='stdout')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple class to redirect a stream to a logger.

Stream like object which can be used to replace sys.stdout, or
sys.stderr.

	Parameters

	
	logger (instance(Logger)) – Instance of a loger object returned by a call to logging.getLogger

	stream_type ({'stdout', 'stderr'}, optionnal) – Type of stream being redirected. Stderr stream are logged as CRITICAL

	
logger

	Instance of a loger used to log the received message

	Type

	instance(Logger)

	
write_info(message)

	Log the received message as info, used for stdout.

The received message is first strip of starting and trailing
whitespaces and line return.

	
write_error(message)

	Log the received message as critical, used for stderr.

The received message is first strip of starting and trailing
whitespaces and line return.

	
flush()

	Useless function implemented for compatibility.

	
class exopy.app.log.tools.QueueHandler(queue)

	Bases: logging.Handler [https://docs.python.org/3/library/logging.html#logging.Handler]

Handler sending events to a queue.

Typically, it would be used together with a multiprocessing Queue to
centralise logging to file in one process (in a multi-process application),
so as to avoid file write contention between processes.
Errors are silently ignored to avoid possible recursions and that’s why
this handler should be coupled to another, safer one.

	Parameters

	queue – Queue to use to log the messages.

	
enqueue(record)

	Enqueue a record.

The base implementation uses put_nowait. You may want to override
this method if you want to use blocking, timeouts or custom queue
implementations.

	
prepare(record)

	Prepares a record for queueing.

The object returned by this method is enqueued. The base implementation
formats the record to merge the message and arguments, and removes
unpickleable items from the record in-place.

You might want to override this method if you want to convert
the record to a dict or JSON string, or send a modified copy
of the record while leaving the original intact.

	
emit(record)

	Emit a record.

Writes the LogRecord to the queue, preparing it first.

	
class exopy.app.log.tools.QueueLoggerThread(queue)

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

Thread emptying a queue containing log record and sending them to the
appropriate logger.

	
queue

	Queue from which to collect log records.

	
run()

	Pull any output from the queue while the listened process does not
put None into the queue or somebody turn off the flag.

	
class exopy.app.log.tools.LogModel

	Bases: atom.atom.Atom

Simple object which can be used in a GuiHandler.

	
text

	Text representing all the messages sent by the handler.
Should not be altered by user code.

	
buff_size

	Maximum number of lines.

	
clean_text()

	Empty the text member.

	
add_message(message)

	Add a message to the text member.

	
class exopy.app.log.tools.GuiHandler(model)

	Bases: logging.Handler [https://docs.python.org/3/library/logging.html#logging.Handler]

Logger record sending the log message to an object which can be linked
to a GUI.

Errors are silently ignored to avoid possible recursions and that’s why
this handler should be coupled to another, safer one.

	Parameters

	model (Atom) – Model object with a text member.

	
emit(record)

	Handle a log record by appending the log message to the model

	
emit(record)

	Write the log record message to the model.

Use Html encoding to add colors, etc.

	
class exopy.app.log.tools.DayRotatingTimeHandler(filename, mode='wb', **kwargs)

	Bases: logging.handlers.TimedRotatingFileHandler [https://docs.python.org/3/library/logging.handlers.html#logging.handlers.TimedRotatingFileHandler]

Custom implementation of the TimeRotatingHandler to avoid issues on
win32.

Found on StackOverflow …

	
doRollover()

	Do a rollover.

Close old file and open a new one, no renaming is performed to avoid
issues on window.

exopy.app.packages package

Submodules

	exopy.app.packages.manifest module

	exopy.app.packages.plugin module

exopy.app.packages.manifest module

Manifest for the PackagesPlugin which collect and handle extension packages.

Extension packages are packages which declare a setuptools entry point :
exopy_package_extension pointing towards a callable returning a lits of plugin
manifest. At application start up, the entry point is inspected and all
collected manifest are registered. They are unregistered during application
closing (after calling the ClosedApp handlers). Each manifest can declare a
priority between 0 and 100 which will be used when unregistering (lower values
unregistered first).

	
class exopy.app.packages.manifest.PackagesManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Manifest of the Packages plugin.

	
exopy.app.packages.manifest.packages_plugin_factory()

	Factory function for the PackagesPLugin

exopy.app.packages.plugin module

Plugin handling the collection and registering of extension packages.

	
class exopy.app.packages.plugin.PackagesPlugin

	Bases: enaml.workbench.plugin.Plugin

Plugin collecting and registering all manifest contributed by extension
packages.

	
packages

	Dictionary listing the extension packages registered at startup, each
entries can contain either a dict listing the id of the registered
manifest with a message indicating whether registering succeeded, or
a message explaining why the package was not loaded.

	
stop()

	Unregister all manifest contributed by extension packages.

	
collect_and_register()

	Iter over packages and register the manifest they are providing.

exopy.app.preferences package

Submodules

	exopy.app.preferences.manifest module

	exopy.app.preferences.plugin module

	exopy.app.preferences.preferences module

exopy.app.preferences.manifest module

Manifest of the preferences plugin.

	
class exopy.app.preferences.manifest.AppDirSelectionDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Simple dialog prompting the user to choose a directory for the app.

	
path

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
user_path

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.app.preferences.manifest.PreferencesManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Manifest for the PreferencePlugin.

	
exopy.app.preferences.manifest.check_app_folder(workbench, cmd_args)

	Check whether or not the app folder is defined and prompt the user if
not.

	
exopy.app.preferences.manifest.get_plugin_preferences(event)

	Handler for the ‘hqc_meas.preferences.get’ command

	
exopy.app.preferences.manifest.load_preferences(event)

	Handler for the ‘exopy.app.preferences.load’ command.

	
exopy.app.preferences.manifest.plugin_init_complete(event)

	Handler for the ‘plugin_init_complete’ command

	
exopy.app.preferences.manifest.preference_plugin_factory()

	Factory function for the PrefPlugin

	
exopy.app.preferences.manifest.save_preferences(event)

	Handler for the ‘exopy.app.preferences.save’ command.

exopy.app.preferences.plugin module

Preferences plugin definition.

	
class exopy.app.preferences.plugin.PrefPlugin

	Bases: enaml.workbench.plugin.Plugin

Plugin responsible for managing the application preferences.

	
app_directory

	Folder used by the application to store informations such as preferences
log files, …

	
last_directory

	Path of the last location visited using a dialog.

	
start()

	Start the plugin, locate app folder and load default preferences.

	
stop()

	Stop the plugin.

	
save_preferences(path=None)

	Collect and save preferences for all registered plugins.

	Parameters

	path (unicode, optional) – Path of the file in which save the preferences. In its absence
the default file is used.

	
load_preferences(path=None)

	Load preferences and update all registered plugin.

	Parameters

	path (unicode, optional) – Path to the file storing the preferences. In its absence default
preferences are loaded.

	
plugin_init_complete(plugin_id)

	Notify the preference plugin that a plugin has started properly.

The associated command should be called by a plugin once it has started
and loaded its preferences. This call is necessary to avoid overriding
values for auto-save members by default values.

	Parameters

	plugin_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Id of the plugin which has started.

	
get_plugin_preferences(plugin_id)

	Access to the preferences values stored for a plugin.

	Parameters

	plugin_id (unicode) – Id of the plugin whose preferences values should be returned.

	Returns

	prefs – Preferences for the plugin as a dict.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str])

	
open_editor()

	

exopy.app.preferences.preferences module

Declarative class for defining hnadling of preferences.

	
class exopy.app.preferences.preferences.Preferences(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Declarative class for defining a workbench preference contribution.

Preferences object can be contributed as extensions child to the ‘plugin’
extension point of a preference plugin.

	
saving_method

	Name of the method of the plugin contributing this extension to call
when the preference plugin need to save the preferences.

	
loading_method

	Name of the method of the plugin contributing this extension to call
when the preference plugin need to load preferences.

	
auto_save

	The list of plugin members whose values should be observed and whose
update should cause and automatic update of the preferences.

	
edit_view(workbench, id)

	Create a view to edit the preferences.

	Parameters

	
	workbench – Reference to the application workbench.

	id (unicode) – Id of the plugin for which to generate the view.

	Returns

	view – View used to edit the preferences. It should have a model
attribute. The model members must correspond to the tagged members
the plugin, their values will be used to update the preferences.

	Return type

	enaml.widgets.api.Container

exopy.app.states package

Submodules

	exopy.app.states.manifest module

	exopy.app.states.plugin module

	exopy.app.states.state module

exopy.app.states.manifest module

State plugin manifest.

	
class exopy.app.states.manifest.StateManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Manifest of the StatesPlugin

	
exopy.app.states.manifest.get_state(event)

	Handler for the get_state command.

	
exopy.app.states.manifest.state_plugin_factory()

	Factory function for the StatePlugin.

exopy.app.states.plugin module

State plugin definition.

	
class exopy.app.states.plugin.StatePlugin

	Bases: enaml.workbench.plugin.Plugin

A plugin to manage application wide available states.

	
start()

	Start the plugin life-cycle.

	
stop()

	Stop the plugin life-cycle.

This method is called by the framework at the appropriate time.
It should never be called by user code.

	
get_state(state_id)

	Return the state associated to the given id.

exopy.app.states.state module

State plugin extension declaration.

	
class exopy.app.states.state.State(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Declarative class for defining a workbench state.

State objects can be contributed as extensions child to the ‘states’
extension point of a state plugin.

	
id

	The globally unique identifier for the state

	
description

	An optional description of what the state provides.

	
sync_members

	The list of plugin members whose values should be reflected in the
state object

exopy.app.app_extensions module

App plugin extensions declarations.

	
class exopy.app.app_extensions.AppStartup(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

A declarative class for defining a workbench app start-up contribution.

AppStartup object can be contributed as extensions child to the ‘startup’
extension point of the ‘exopy.app’ plugin. AppStartup object are used
to customize the application start up.

	
id

	The globally unique identifier for the start-up.

	
priority

	The priority determine the order in which AppStartup are called. The
lowest this number the sooner the object will be called. Two
AppStartup with the same priority are called in the order in which they
have been discovered.

	
run(workbench, cmd_args)

	Function called during app start-up.

	Parameters

	
	workbench – Reference to the application workbench.

	cmd_args – Commandline arguments passed by the user.

	
class exopy.app.app_extensions.AppClosing(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

A declarative class for defining a workbench app closing contribution.

AppClosing object can be contributed as extensions child to the ‘closing’
extension point of the ‘exopy.app’ plugin. AppClosing object are used
to check whether or not the application can be exited safely.

	
id

	The globally unique identifier for the closing.

	Type

	unicode

	
validate

	A callable performing checks ensuring that the application can be
safely exited and setting the event (CloseEvent) accordingly.

	Type

	callable(window, event)

	
id

	The globally unique identifier for the closing.

	
validate(window, event)

	Check that the application can be safely exited.

If it is not the case the event should be ignored (by calling the
ignore method)

	Parameters

	
	window – Reference to the main application window.

	event (enaml.widgets.window.ClosedEvent) – Closing event whose ignore method should be called to prevent
application closing.

	
class exopy.app.app_extensions.AppClosed(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

A declarative class for defining a workbench app closed contribution.

AppClosed object can be contributed as extensions child to the ‘closed’
extension point of the ‘exopy.app’ plugin. AppClosed object are used
to perform some clean up operation before stopping any plugin.

MOST of the time performing clean up when stopping the plugin is sufficient
and should be the preferred solution.

	
id

	
	Type

	unicode

	validatecallable(window, event)
	A callable performing checks ensuring that the application can be
safely exited and setting the event (CloseEvent) accordingly.

	
id

	The globally unique identifier for the closing.

	
priority

	The priority determine the order in which AppClosed are called. The
lowest this number the sooner the object will be called. Two
AppClosed with the same priority are called in the order in which they
have been discovered.

	
clean(workbench)

	Function called during application closing.

	Parameters

	workbench – Reference to the application workbench.

exopy.app.app_manifest module

App plugin manifest.

	
class exopy.app.app_manifest.AppManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Exopy app plugin manifest.

	
class exopy.app.app_manifest.AppWindow(parent=None, **kwargs)

	Bases: enaml.workbench.ui.workbench_window.WorkbenchWindow

Custom window checking that no plugin veto the closing before closing.

	
exopy.app.app_manifest.app_plugin_factory()

	Factory function for the app plugin.

	
exopy.app.app_manifest.application_factory()

	Factory function for the QtApplication used by Exopy.

Simply set the application icon and on Windows make sure the application
is not seen as a simple python interpreter.

exopy.app.app_plugin module

Application plugin handling the application startup and closing.

	
class exopy.app.app_plugin.AppPlugin

	Bases: enaml.workbench.plugin.Plugin

A plugin to manage application life cycle.

	
startup

	Collect all contributed AppStartup extensions.

	
closing

	Collect all contributed AppClosing extensions.

	
closed

	Collect all contributed AppClosed extensions.

	
start()

	Start the plugin life-cycle.

This method is called by the framework at the appropriate time. It
should never be called by user code.

	
stop()

	Stop the plugin life-cycle.

This method is called by the framework at the appropriate time.
It should never be called by user code.

	
run_app_startup(cmd_args)

	Run all the registered app startups based on their priority.

	
validate_closing(window, event)

	Run all closing checks to determine whether or not to close the app.

	
run_app_cleanup()

	Run all the registered app closed based on their priority.

exopy.instruments package

Subpackages

	connections
	Submodules

	drivers
	Submodules

	settings
	Submodules

	starters
	Submodules

	widgets
	Submodules

Submodules

	exopy.instruments.infos module

	exopy.instruments.manifest module

	exopy.instruments.manufacturer_aliases module

	exopy.instruments.plugin module

	exopy.instruments.user module

exopy.instruments.connections package

Submodules

	exopy.instruments.connections.base_connection module

	exopy.instruments.connections.visa_connections module

exopy.instruments.connections.base_connection module

Base classes to handle connection information edition.

Connection information are the information a user need to provide to open a
connection to an instrument. The format of a connection does not depend on the
architecture backend as any format discrepencies should be smoothed by the
starter used to instantiate the driver.

	
class exopy.instruments.connections.base_connection.BaseConnection(parent=None, **kwargs)

	Bases: enaml.widgets.group_box.GroupBox

Base widget for creating a connection.

	
declaration

	Reference to the declaration that created this object.

	
read_only

	Whether or not to make the connection editable

	
gather_infos()

	Return the current values as a dictionary.

	
class exopy.instruments.connections.base_connection.Connection(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

A declarative class for contributing a connection.

Connection object can be contributed as extension children to the
‘connections’ extension point of the ‘exopy.instruments’ plugin.

	
id

	Unique name used to identify the connection.

	
description

	Connection description.

	
new(workbench, defaults, read_only)

	Create a new connection and instantiate it properly.

Defaults should be used to update the created connection.

exopy.instruments.connections.visa_connections module

VISA connection information edition tools.

	
class exopy.instruments.connections.visa_connections.BaseVisaConnection(parent=None, **kwargs)

	Bases: exopy.instruments.connections.base_connection.BaseConnection

Base class for all connection relying on the VISA protocol.

Names are expected to match the ones found in PyVISA.

	
gather_infos

	

	
infos

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
interface_type

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
rc_lab

	

	
rc_val

	

	
resource_class

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.instruments.connections.visa_connections.VisaConnection(parent=None, **kwargs)

	Bases: exopy.instruments.connections.base_connection.Connection

Convenience class to declare a VISA connection.

	
new

	

	
class exopy.instruments.connections.visa_connections.VisaGPIB(parent=None, **kwargs)

	Bases: exopy.instruments.connections.visa_connections.BaseVisaConnection

Connection settings for GPIB instruments.

	
board

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
primary_address

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
secondary_address

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.instruments.connections.visa_connections.VisaRS232(parent=None, **kwargs)

	Bases: exopy.instruments.connections.visa_connections.BaseVisaConnection

Connection settings for serial instruments.

	
board

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.instruments.connections.visa_connections.VisaRaw(parent=None, **kwargs)

	Bases: exopy.instruments.connections.base_connection.BaseConnection

Connection allowing to enter directly the VISA resource name.

This allows to support VISA aliases.

	
gather_infos

	

	
resource_name

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.instruments.connections.visa_connections.VisaTCPIP(parent=None, **kwargs)

	Bases: exopy.instruments.connections.visa_connections.BaseVisaConnection

Connection settings for USB instruments.

	
board

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
gather_infos

	

	
host_address

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
lan_device_name

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
layout_constraints

	

	
port

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.instruments.connections.visa_connections.VisaUSB(parent=None, **kwargs)

	Bases: exopy.instruments.connections.visa_connections.BaseVisaConnection

Connection settings for USB instruments.

	
address_format

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
board

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
manufacturer_id

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
model_code

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
serial_number

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
usb_interface_number

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.instruments.drivers package

Submodules

	exopy.instruments.drivers.driver_decl module

exopy.instruments.drivers.driver_decl module

Declarator for registering drivers.

	
class exopy.instruments.drivers.driver_decl.Driver(parent=None, **kwargs)

	Bases: exopy.utils.declarator.Declarator

Declarator used to register a new driver for an instrument.

	
driver

	Path to the driver object. Path should be dot separated and the class
name preceded by ‘:’.
TODO complete : ex: exopy_hqc_legacy.instruments.
The path of any parent Drivers object will be prepended to it.

	
architecture

	Name identifying the system the driver is built on top of (lantz, hqc,
slave, etc …). Allow to handle properly multiple drivers declared in
a single extension package for the same instrument.

	
manufacturer

	Name of the instrument manufacturer. Can be inferred from parent
Drivers.

	
serie

	Serie this instrument is part of. This is optional as it does not always
make sense to be specified but in some cases it can help finding a
a driver. Can be inferred from parent Drivers.

	
model

	Model of the instrument this driver has been written for.

	
kind

	Kind of the instrument, to ease instrument look up. If no kind match,
leave ‘Other’ as the kind. Can be inferred from parent
Drivers.

	
starter

	Starter to use when initializing/finialzing this driver.
Can be inferred from parent Drivers.

	
connections

	Supported connections and default values for some parameters. The
admissible values for a given kind can be determined by looking at the
Connection object whose id match.
ex : {‘visa_tcpip’ : {‘port’: 7500, ‘resource_class’: ‘SOCKET’}}
Can be inferred from parent Drivers.

	
settings

	Special settings for the driver, not fitting the connections. Multiple
identical connection infos with different settings can co-exist in a
profile. The admissible values for a given kind can be determined by
looking at the Settings object whose id match.
ex : {‘lantz’: {‘resource_manager’: ‘@py’}}
Can be inferred from parent Drivers.

	
id

	Id of the driver computed from the top-level package and the driver name

	
register(collector, traceback)

	Collect driver and add infos to the DeclaratorCollector
contributions member.

	
unregister(collector)

	Remove contributed infos from the collector.

	
class exopy.instruments.drivers.driver_decl.Drivers(parent=None, **kwargs)

	Bases: exopy.utils.declarator.GroupDeclarator

Declarator to group driver declarations.

For the full documentation of the members values please the Driver class.

	
architecture

	Name identifying the system the driver is built on top of for the
declared children.

	
manufacturer

	Instrument manufacturer of the declared children.

	
serie

	Serie of the declared children.

	
kind

	Kind of the declared children.

	
starter

	Starter to use for the declared children.

	
connections

	Supported connections of the declared children.

	
settings

	Settings of the declared children.

exopy.instruments.settings package

Submodules

	exopy.instruments.settings.base_settings module

exopy.instruments.settings.base_settings module

Base classes to handle driver settings edition.

Settings are architecture specific information. Then can allow to select a
if several are available for example.

	
class exopy.instruments.settings.base_settings.BaseSettings(parent=None, **kwargs)

	Bases: enaml.widgets.group_box.GroupBox

Base widget for creating settings.

	
user_id

	Id of this settings (different from the declaration one as multiple
settings of the same type can exist for a single instrument).

	
declaration

	Reference to the declaration that created this object.

	
read_only

	Whether or not to make the settings editable

	
gather_infos()

	Return the current values as a dictionary.

The base funcion should always be called (using
BaseSettings.gather_infos as super is not allowed in declarative
functions) and all values should be strings.

	
title

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
class exopy.instruments.settings.base_settings.Settings(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

A declarative class for contributing a driver settings.

Settings object can be contributed as extensions child to the
‘settings’ extension point of the ‘exopy.instruments’ plugin.

	
id

	Unique name used to identify the editor.

	
description

	Connection description.

	
new(workbench, defaults, read_only)

	Create a new setting and instantiate it properly.

Defaults should be used to update the created setting.

exopy.instruments.starters package

Submodules

	exopy.instruments.starters.base_starter module

	exopy.instruments.starters.exceptions module

exopy.instruments.starters.base_starter module

Tool handling initializind/finalizing a driver.

	
class exopy.instruments.starters.base_starter.BaseStarter

	Bases: atom.atom.Atom

Base class for instrument starter.

	
id

	Id of the starter set by the declaration.

	
start(driver_cls, connection, settings)

	Fully initialize a driver and open the communication channel.

	Parameters

	
	driver_cls (type [https://docs.python.org/3/library/functions.html#type]) – Class of the driver to initialize.

	connection (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Connection information provided by the user.

	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Driver specififc settings provided by the user.

	Returns

	driver – Driver instance fully initilized and ready for communication.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	Raises

	InstrIOError : – If the connection to the instrument could not be opened.

	
check_infos(driver_cls, connection, settings)

	Check that the provided information and settings allow to open
the communication.

	Parameters

	
	driver_cls (type [https://docs.python.org/3/library/functions.html#type]) – Class of the driver to initialize.

	connection (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Connection information provided by the user.

	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Driver specififc settings provided by the user.

	Returns

	
	result (bool) – Whether the system managed to open the communication.

	msg (unicode) – Message giving details about any issue which may have occured
during the test.

	
reset(driver)

	Reset the instrument state after a possible alteration by the user.

Typically this shold clear the cache of the driver and reset any notion
of ownership.

	
stop(driver)

	Close the communication with the instrument.

	Parameters

	driver – Driver instance created previously by the starter.

	
class exopy.instruments.starters.base_starter.Starter(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Object responsible initializind/finalizing a driver of a certain type.

	
id

	Unique id identifying this starter.
The usual format is top_level_package_name.starter_name

	
description

	Description of the starter action.

	
starter

	Starter instance to use for managing associate instruments.
Note that the class must be defined in a python file not enaml file

to be pickeable.

exopy.instruments.starters.exceptions module

Tool handling initializind/finalizing a driver.

	
exception exopy.instruments.starters.exceptions.InstrIOError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Exception used by starters to report an IO error.

exopy.instruments.widgets package

Submodules

	exopy.instruments.widgets.browsing module

	exopy.instruments.widgets.instrument_selection module

	exopy.instruments.widgets.profile_edition module

	exopy.instruments.widgets.profile_selection module

exopy.instruments.widgets.browsing module

Widgets used to select a model.

	
class exopy.instruments.widgets.browsing.BrowsingDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog allowing to explore the resources available to the plugin.

	
plugin

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.instruments.widgets.instrument_selection module

Widgets used to select a model.

	
class exopy.instruments.widgets.instrument_selection.ModelSelectionDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog allowing to choose an instrument model.

	
instr_model

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
plugin

	

	
class exopy.instruments.widgets.instrument_selection.ModelSelectionWidget(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Widget displaying All the known instruments models as a tree.

Models can be filtered by kind and series diplayed or hidden.

	
kind

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
model

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
plugin

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
use_series

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.instruments.widgets.instrument_selection.ModelView(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

View summarizing the infos about a specific model.

	
layout_constraints

	

	
model

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.instruments.widgets.profile_edition module

Widgets used to edit an instrument profile.

	
class exopy.instruments.widgets.profile_edition.ConnectionCreationDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog allowing the user to select the connection to add to the profile.

	
connection

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
create_connection

	

	
existing

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
model_infos

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
plugin

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.instruments.widgets.profile_edition.ConnectionValidationWindow(parent=None, **kwargs)

	Bases: enaml.widgets.window.Window

Dialog allowing the user to test that the provided information allow to
open the connection.

	
connection

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
driver

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
editor

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
plugin

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
profile_infos

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
settings

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.instruments.widgets.profile_edition.ProfileEditionDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog allowing to edit a profile infos.

	
creation

	

	
plugin

	

	
profile_infos

	

	
class exopy.instruments.widgets.profile_edition.ProfileEditionWidget(parent=None, **kwargs)

	Bases: exopy.utils.enaml_destroy_hook.add_destroy_hook.<locals>.Destroyable

Widget dedicated to editing a profile.

	
connections

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
creation

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
plugin

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
profile_infos

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
read_only

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
settings

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
sync

	

	
class exopy.instruments.widgets.profile_edition.RenameSettingsPopup(parent=None, **kwargs)

	Bases: enaml.widgets.popup_view.PopupView

PopupView to rename a settings.

	
editor

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
existing

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
settings

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.instruments.widgets.profile_edition.SetValidator

	Bases: enaml.validator.Validator

Validator allowing names which does not yet exist.

	
existing

	A member which will coerce a value to a given instance type.

Unlike Typed or Instance, a Coerced value is not intended to be
set to None.

	
valid

	A value of type bool.

	
validate(text)

	Check that the name does yet exist.

	
class exopy.instruments.widgets.profile_edition.SettingsCreationDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog allowing the user to select the settings to add to the profile.

	
create_settings

	

	
existing

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
model_infos

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
plugin

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
settings

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
exopy.instruments.widgets.profile_edition.clean_name(name)

	Clean a name connection.

	
exopy.instruments.widgets.profile_edition.trim_description(desc)

	Trim a connection or settings description.

The Defaults section useful to developper is suppressed.

exopy.instruments.widgets.profile_selection module

Widgets used to select a profile and the driver/connection/settings to use.

	
class exopy.instruments.widgets.profile_selection.ProfileSelectionDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

A dialog to select a profile and what connection and settings to use.

	
connection

	

	
driver

	

	
filter_drivers

	

	
filter_profiles

	

	
plugin

	

	
profile

	

	
settings

	

	
class exopy.instruments.widgets.profile_selection.ProfileSelectionWidget(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

A widget to select a profile and what connection and settings to use.

	
connection

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
driver

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
filter_drivers

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
filter_profiles

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
infos

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
plugin

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
post_set_infos

	

	
profile

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
settings

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
exopy.instruments.widgets.profile_selection.matching_connections(infos, d_id)

	Determine the allowed connections based on the selected driver.

	
exopy.instruments.widgets.profile_selection.matching_settings(infos, d_id)

	Determine the allowed settings based on the selected driver.

exopy.instruments.infos module

Container objects used to encapsulate info about drivers, instruments, etc

	
class exopy.instruments.infos.DriverInfos

	Bases: atom.atom.Atom

Object summarizing the information about a driver.

	
id

	Id of the driver built on the class name and the top-level package

	
cls

	Actual class to use as driver.

	
infos

	Infos allowing to identify the instrument this driver is targetting.

	
starter

	Starter id

	
connections

	Connection information.

	
settings

	Settings information.

	
valid

	Flag indicating whether or not the informations stored are valid
and safe to use.

	
validate(plugin)

	Validate that starter, connections, settings ids are all known.

	Parameters

	plugin – Instrument plugin instance holding the starters (connections,
settings) definitions.

	Returns

	
	result (bool) – Boolean indicating if all ids are indeed known.

	unknown (dict) – Mapping listing by categories (starter, connections, settings) the
unkown ids.

	
class exopy.instruments.infos.InstrumentModelInfos

	Bases: atom.atom.Atom

Details about a particular model based on all the available drivers.

	
manufacturer

	Instrument manufacturer (this is the real manufacturer not an alias).

	
model

	Instrument model.

	
serie

	Instrument serie.

	
kind

	Instrument kind.

	
drivers

	List of supported drivers.

	
connections

	Supported connections (all drivers connections infos are merged).

	
settings

	Supported settings (all drivers settings infos are merged).

	
id

	Id of the model.

	
update(drivers, removed=False)

	Update the infos from a list of drivers.

	Parameters

	
	drivers (list [https://docs.python.org/3/library/stdtypes.html#list][DriverInfos]) – List of drivers infos to use for updating.

	remove (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag indicating whether the infos should be added or removed.

	
find_matching_drivers(connection_id, settings_id=None)

	Find the drivers supporting the right connection and settings.

	Parameters

	
	connection_id (unicode) – Connection id for which to for a matching driver.

	settings_id (unicode, optional) – Settings id for which to find a matching id.

	
class exopy.instruments.infos.SeriesInfos

	Bases: atom.atom.Atom

Container object used to store series infos.

	
name

	Name of the serie.

	
instruments

	List of the instrument models matching the selected kind.
This object should not be manipulated by user code.

	
kind

	Expose the known instruments only of the matching kind.

	
update_models(drivers, removed=False)

	Update the known models from a list of drivers.

	
class exopy.instruments.infos.ManufacturerInfos

	Bases: exopy.instruments.infos.SeriesInfos

Container object used to store manufacturer infos.

Notes

Models are stored by series in instruments member if use_series is True

	
use_series

	Expose the known instrument by series.

	
aliases

	Known aliases for the manufacturer.

	
update_series_and_models(drivers, removed=False)

	Update the known series and models from a list of drivers.

	
kind

	A member where the value can be one in a sequence of items.

	
class exopy.instruments.infos.ManufacturersHolder

	Bases: atom.atom.Atom

Container class for manufacturers.

	
plugin

	Refrence to the instrument plugin.

	
manufacturers

	Filtered list of manufacturers.

	
use_series

	Expose the known instrument by series.

	
kind

	Expose the known instruments only of the matching kind.

	
update_manufacturers(drivers, removed=False)

	Update a manufacturer infos and create it if it does not exist yet.

	Parameters

	drivers (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of drivers.

	
class exopy.instruments.infos.ProfileInfos

	Bases: atom.atom.Atom

Details about a profile.

This is used as a cache to avoid reloading all the profile everytime.

	
path

	Path to the .ini file holding the full infos.

	
plugin

	Reference to the instrument plugin.

	
id

	Profile id.

	
model

	Supported model

	
connections

	Dict of the connections

	
settings

	Dict of the settings

	
write_to_file()

	Save the profile to a file.

	
clone()

	Clone this object.

	
classmethod create_blank(plugin)

	Create a new blank ProfileInfos.

	
exopy.instruments.infos.validate_profile_infos(infos)

	Make sure that a ProfileInfos is backed by a correct file.

exopy.instruments.manifest module

Instrument manager plugin manifest.

	
class exopy.instruments.manifest.InstrumentManagerManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Manifest for the task manager.

	
exopy.instruments.manifest.manager_plugin_factory()

	Factory funcion for the instr manager plugin.

	
exopy.instruments.manifest.open_browser_dialog_handler(event)

	Open the instrument browsing dialog.

	
exopy.instruments.manifest.select_instrument_handler(event)

	Handler for the exopy.instruments.select_instrument command.

exopy.instruments.manufacturer_aliases module

Declarative object use to declare aliases of a manufacturer name.

ex : Keysight : aliases Agilent, HP

	
class exopy.instruments.manufacturer_aliases.ManufacturerAlias(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Declares that a manufacturer may be known under different names.

	
id

	Main name under which the vendor is expected to be known

	
aliases

	List of aliased names.

exopy.instruments.plugin module

Instrument manager plugin.

	
exopy.instruments.plugin.validate_user(user)

	Validate that the user does declare a validate method if its policy is
releasable.

	
exopy.instruments.plugin.validate_starter(starter)

	Validate a starter declaration by checking for members and provided
starter.

	
class exopy.instruments.plugin.InstrumentManagerPlugin

	Bases: exopy.utils.plugin_tools.HasPreferencesPlugin

The instrument plugin manages the instrument drivers and their use.

	
profiles

	List of the known instrument profile ids.

	
instruments

	List of instruments for which at least one driver is declared.

	
users

	List of registered intrument users.
Only registered users can be granted the use of an instrument.

	
starters

	List of registered instrument starters.

	
connections

	List of registered connection types.

	
settings

	List of registered settings.

	
used_profiles

	Currently used profiles.
This dict should be edited by user code.

	
start()

	Start the plugin lifecycle by collecting all contributions.

	
stop()

	Stop the plugin and remove all observers.

	
create_connection(connection_id, infos, read_only=False)

	Create a connection and initialize it.

	Parameters

	
	connection_id (unicode) – Id of the the connection to instantiate.

	infos (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionarry to use to initialize the state of the connection.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the connection be created as read-only.

	Returns

	connection – Ready to use widget.

	Return type

	BaseConnection

	
create_settings(settings_id, infos, read_only=False)

	Create a settings and initialize it.

	Parameters

	
	settings_id (unicode) – Id of the the settings to instantiate.

	infos (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary to use to initialize the state of the settings.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the settings be created as read-only.

	Returns

	connection – Ready to use widget.

	Return type

	BaseSettings

	
get_drivers(drivers)

	Query drivers class and the associated starters.

	Parameters

	drivers (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of driver ids for which the matching class should be returned.

	Returns

	
	drivers (dict) – Requested drivers and associated starter indexed by id.

	missing (list) – List of ids which do not correspond to any known valid driver.

	
get_profiles(user_id, profiles, try_release=True, partial=False)

	Query profiles for use by a declared user.

	Parameters

	
	user_id (unicode) – Id of the user which request the authorization to use the
instrument.

	profiles (list [https://docs.python.org/3/library/stdtypes.html#list]) – Ids of the instrument profiles which are requested.

	try_release (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Should we attempt to release currently used profiles.

	partial (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Should only a subset of the requested profiles be returned if some
profiles are not available.

	Returns

	
	profiles (dict) – Requested profiles as a dictionary.

	unavailable (list) – List of profiles that are not currently available and cannot be
released.

	
release_profiles(user_id, profiles)

	Release some previously acquired profiles.

The user should not maintain any communication with the instruments
whose profiles have been released after calling this method.

	Parameters

	
	user_id (unicode) – Id of the user releasing the profiles.

	profiles (iterable) – Profiles (ids) which are no longer needed by the user.

	
get_aliases(manufacturer)

	List the known aliases of a manufacturer.

	Parameters

	manufacturer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the manufacturer for which to return the aliases.

	Returns

	aliases – Known aliases of the manufacturer.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][unicode]

exopy.instruments.user module

Declaration of plugin susceptible to use instruments

	
class exopy.instruments.user.InstrUser(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Extension to the ‘exopy.instruments.users’ extensions point.

	
id

	Plugin id associated with this use of instrument. This allow the manager
to know what part of the application requested the right to use some
drivers.

	
policy

	Is the plugin susceptible to release the profiles it is currently using
if the manager asks it to do so.

	
release_profiles(workbench, profiles)

	Release the specified profiles or some of them.

This call can block until the profiles can be released (if it is likely
to happen in a relatively short time). The
‘exopy.instruments.notify_profiles_released’ command should not be
called (the manager knows what profiles it requested and will handle
the tracking of the current user for each profile itself).

	Parameters

	
	workbench – Application workbench.

	profiles (list [https://docs.python.org/3/library/stdtypes.html#list][unicode]) – List of profiles the manager is requesting the user to release.

	Returns

	released_profiles – List of the profiles that have been released.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][unicode]

exopy.tasks package

Subpackages

	configs
	Submodules

	tasks
	Subpackages

	Submodules

	utils
	Submodules

	widgets
	Submodules

Submodules

	exopy.tasks.declarations module

	exopy.tasks.filters module

	exopy.tasks.infos module

	exopy.tasks.manifest module

	exopy.tasks.plugin module

exopy.tasks.configs package

Submodules

	exopy.tasks.configs.base_config_views module

	exopy.tasks.configs.base_configs module

	exopy.tasks.configs.loop_config module

	exopy.tasks.configs.loop_config_view module

exopy.tasks.configs.base_config_views module

Standard task configurers associated views.

	
class exopy.tasks.configs.base_config_views.BaseConfigView(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Base class for all task configurer views.

	
config

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
name_field

	

	
name_label

	

	
class exopy.tasks.configs.base_config_views.PyConfigView(parent=None, **kwargs)

	Bases: exopy.tasks.configs.base_config_views.BaseConfigView

View for the standard python task configurer.

	
loop

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.tasks.configs.base_config_views.TemplateConfigView(parent=None, **kwargs)

	Bases: exopy.tasks.configs.base_config_views.BaseConfigView

View for the template configurer.

exopy.tasks.configs.base_configs module

Standard task configurers.

	
exopy.tasks.configs.base_configs.task_manager()

	Delayed import of TaskManagerPlugin.

	
class exopy.tasks.configs.base_configs.BaseTaskConfig(**kwargs)

	Bases: atom.atom.Atom

Base class for task configurer.

	
manager

	Task manager, necessary to retrieve task implementations.

	
task_name

	Name of the task to create.

	
task_class

	Class of the task to create.

	
ready

	Bool indicating if the build can be done.

	
check_parameters()

	The only parameter required is a valid task name.

	
build_task()

	This method use the user parameters to build the task object

	Returns

	task – Task object built using the user parameters. Ready to be
inserted in a task hierarchy.

	Return type

	BaseTask

	
class exopy.tasks.configs.base_configs.PyTaskConfig(**kwargs)

	Bases: exopy.tasks.configs.base_configs.BaseTaskConfig

Standard configurer for python tasks.

This configurer is suitable for most python task whose initialisation
simply requires a name.

	
task_doc

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
build_task()

	This method use the user parameters to build the task object

	Returns

	task – Task object built using the user parameters. Ready to be
inserted in a task hierarchy.

	Return type

	BaseTask

	
class exopy.tasks.configs.base_configs.TemplateTaskConfig(**kwargs)

	Bases: exopy.tasks.configs.base_configs.BaseTaskConfig

Configurer for template task.

This configurer use the data stored about a task hierarchy to rebuild it
from scratch.

	
template_path

	Path to the file storing the hierarchy.

	
template_doc

	Description of the template.

	
build_task()

	Build the task stored in the selected template.

exopy.tasks.configs.loop_config module

Configurer dedicated to the LoopTask allowing to specify a task to embed.

	
class exopy.tasks.configs.loop_config.LoopTaskConfig(**kwargs)

	Bases: exopy.tasks.configs.base_configs.PyTaskConfig

Special configurer allowing to embed a task into a LoopTask.

	
use_subtask

	Whether or not to embed a subtask.

	
subtask

	Embedded task id.

	
subconfig

	Configurer for the subtask.

	
subview

	View of the configurer

	
check_parameters()

	Ensure that both this config and the subconfig parameters are valid.

	
build_task()

	Build the task and the potential subtask.

exopy.tasks.configs.loop_config_view module

View of the LoopTask configurer.

	
class exopy.tasks.configs.loop_config_view.LoopConfigView(parent=None, **kwargs)

	Bases: exopy.tasks.configs.base_config_views.BaseConfigView

View for the LoopTaskConfig.

Another config view can be embedded when use_subtask is checked.

exopy.tasks.tasks package

Subpackages

	logic
	Subpackages

	Submodules

	util
	Subpackages

	Submodules

Submodules

	exopy.tasks.tasks.base_tasks module

	exopy.tasks.tasks.base_views module

	exopy.tasks.tasks.database module

	exopy.tasks.tasks.decorators module

	exopy.tasks.tasks.instr_task module

	exopy.tasks.tasks.instr_view module

	exopy.tasks.tasks.shared_resources module

	exopy.tasks.tasks.string_evaluation module

	exopy.tasks.tasks.task_editor module

	exopy.tasks.tasks.task_interface module

	exopy.tasks.tasks.validators module

exopy.tasks.tasks.logic package

Subpackages

	views
	Submodules
	exopy.tasks.tasks.logic.views.conditional_view module

	exopy.tasks.tasks.logic.views.loop_exceptions_views module

	exopy.tasks.tasks.logic.views.loop_iterable_view module

	exopy.tasks.tasks.logic.views.loop_linspace_view module

	exopy.tasks.tasks.logic.views.loop_view module

	exopy.tasks.tasks.logic.views.while_view module

Submodules

	exopy.tasks.tasks.logic.conditional_task module

	exopy.tasks.tasks.logic.declarations module

	exopy.tasks.tasks.logic.loop_exceptions module

	exopy.tasks.tasks.logic.loop_exceptions_tasks module

	exopy.tasks.tasks.logic.loop_iterable_interface module

	exopy.tasks.tasks.logic.loop_linspace_interface module

	exopy.tasks.tasks.logic.loop_task module

	exopy.tasks.tasks.logic.while_task module

exopy.tasks.tasks.util package

Subpackages

	views
	Submodules
	exopy.tasks.tasks.util.views.definition_view module

	exopy.tasks.tasks.util.views.formula_view module

	exopy.tasks.tasks.util.views.log_view module

	exopy.tasks.tasks.util.views.sleep_view module

Submodules

	exopy.tasks.tasks.util.declarations module

	exopy.tasks.tasks.util.definition_task module

	exopy.tasks.tasks.util.formula_task module

	exopy.tasks.tasks.util.log_task module

	exopy.tasks.tasks.util.sleep_task module

exopy.tasks.tasks.base_tasks module

Definition of the base tasks.

The base tasks define how task interact between them and with the database, how
ressources can be shared and how preferences are handled.

	
exopy.tasks.tasks.base_tasks.PREFIX = '_a'

	Prefix for placeholders in string formatting and evaluation.

	
exopy.tasks.tasks.base_tasks.DEP_TYPE = 'exopy.task'

	Id used to identify dependencies type.

	
class exopy.tasks.tasks.base_tasks.BaseTask

	Bases: atom.atom.Atom

Base class defining common members of all Tasks.

This class basically defines the minimal skeleton of a Task in term of
members and methods.

	
dep_type

	Identifier for the build dependency collector

	
task_id

	Name of the class, used for persistence.

	
name

	Name of the task this should be unique in hierarchy.

	
depth

	Depth of the task in the hierarchy. this should not be manipulated
directly by user code.

	
preferences

	Reference to the Section in which the task stores its preferences.

	
database

	Reference to the database used by the task to exchange information.

	
database_entries

	Entries the task declares in the database and the associated default
values. This should be copied and re-assign when modified not modfied
in place.

	
path

	Path of the task in the hierarchy. This refers to the parent task and
is used when writing in the database.

	
root

	Reference to the root task in the hierarchy.

	
parent

	Refrence to the parent task.

	
perform_

	Unbound method called when the task is asked to do its job. This is
basically the perform method but wrapped with useful stuff such as
interruption check or parallel, wait features.

	
stoppable

	Flag indicating if this task can be stopped.

	
parallel

	Dictionary indicating whether the task is executed in parallel
(‘activated’ key) and which is pool it belongs to (‘pool’ key).

	
wait

	Dictionary indicating whether the task should wait on any pool before
performing its job. Three valid keys can be used :
- ‘activated’ : a bool indicating whether or not to wait.
- ‘wait’ : the list should then specify which pool should be waited.
- ‘no_wait’ : the list should specify which pool not to wait on.

	
access_exs

	Dict of access exception in the database. This should not be manipulated
by user code.

	
perform()

	Main method of the task called when the measurement is performed.

	
check(*args, **kwargs)

	Check that everything is alright before starting a measurement.

By default tries to format all members tagged with ‘fmt’ and try to
eval all members tagged with ‘feval’.

	
prepare()

	Prepare the task to be performed.

This method is called once by the root task before starting the
execution of its children tasks. By default it simply build the
perform_ method by wrapping perform with the appropriate decorators.
This method can be overridden to execute other actions, however keep in
my mind that those actions must not depende on the state of the system
(no link to database).

	
register_preferences()

	Create the task entries in the preferences object.

	
update_preferences_from_members()

	Update the entries in the preference object.

	
classmethod build_from_config(config, dependencies)

	Create a new instance using the provided infos for initialisation.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str])) – Dictionary holding the new values to give to the members in string
format, or dictionnary like for instance with prefs.

	dependencies (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary holding the necessary classes needed when rebuilding..

	
traverse(depth=- 1)

	Yield a task and all of its components.

The base implementation simply yields the task itself.

	Parameters

	depth (int [https://docs.python.org/3/library/functions.html#int]) – How deep should we explore the tree of tasks. When this number
reaches zero deeper children should not be explored but simply
yielded.

	
register_in_database()

	Register the task entries into the database.

	
unregister_from_database()

	Remove the task entries from the database.

	
add_access_exception(entry, level)

	Add an access exception for an entry.

	Parameters

	
	entry (unicode) – Name of the task database entry for which to add an exception.

	level (int [https://docs.python.org/3/library/functions.html#int]) – Number of hierarchical levels to go up when adding the exception.

	
modify_access_exception(entry, new)

	Modify the level of an existing access exception.

	Parameters

	
	entry (unicode) – Name of the task database entry for which to modify an exception.

	new (int [https://docs.python.org/3/library/functions.html#int]) – New level for the access exception. If this is not strictly
positive the access exception is simply removed.

	
remove_access_exception(entry)

	Remove an access exception .

	Parameters

	entry (unicode) – Name of the task database entry for which to remove an exception.

	
write_in_database(name, value)

	Write a value to the right database entry.

This method build a task specific database entry from the name
and the name argument and set the database entry to the specified
value.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Simple name of the entry whose value should be set, ie no task name
required.

	value – Value to give to the entry.

	
get_from_database(full_name)

	Access to a database value using full name.

	Parameters

	full_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Full name of the database entry, ie name + ‘_’ + entry,
where name is the name of the task that wrote the value in
the database.

	
remove_from_database(full_name)

	Delete a database entry using its full name.

	Parameters

	full_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Full name of the database entry, ie name + ‘_’ + entry,
where name is the name of the task that wrote the value in
the database.

	
list_accessible_database_entries()

	List the database entries accessible from this task.

	
format_string(string)

	Replace values between {} by their corresponding database value.

	Parameters

	string (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to format using the current values of the database.

	Returns

	formatted – Formatted version of the input.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
format_and_eval_string(string)

	Replace values in {} by their corresponding database value and eval

	Parameters

	string (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to eval using the current values of the database.

	Returns

	value – Evaluated version of the input.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	
get_error_path()

	Build the path to use when reporting errors during checks.

	
class exopy.tasks.tasks.base_tasks.SimpleTask

	Bases: exopy.tasks.tasks.base_tasks.BaseTask

Task with no child task, written in pure Python.

This class is mainly used to avoid having a linear ancestry relationship
between SimpleTask and ComplexTask.

	
loopable = False

	Class attribute specifying if that task can be used in a loop

	
register_preferences()

	Register the task preferences into the preferences system.

	
update_preferences_from_members()

	Register the task preferences into the preferences system.

	
classmethod build_from_config(config, dependencies)

	Create a new instance using the provided infos for initialisation.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str])) – Dictionary holding the new values to give to the members in string
format, or dictionnary like for instance with prefs.

	dependencies (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary holding the necessary classes needed when rebuilding.

	
class exopy.tasks.tasks.base_tasks.ComplexTask

	Bases: exopy.tasks.tasks.base_tasks.BaseTask

Task composed of several subtasks.

	
children

	List of all the children of the task. The list should not be manipulated
directly by user code.
The tag ‘child’ is used to mark that a member can contain child tasks
and is used to gather children for operation which must occur on all of
them.

	
children_changed

	Signal emitted when the list of children change, the payload will be a
ContainerChange instance.
The tag ‘child_notifier’ is used to mark that a member emmit
notifications about modification of another ‘child’ member. This allow
editors to correctly track all of those.

	
has_root

	Flag indicating whether or not the task has a root task.

	
perform()

	Run sequentially all child tasks.

	
check(*args, **kwargs)

	Run test of all child tasks.

	
prepare()

	Overridden to prepare also children tasks.

	
add_child_task(index, child)

	Add a child task at the given index.

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – Index at which to insert the new child task.

	child (BaseTask) – Task to insert in the list of children task.

	
move_child_task(old, new)

	Move a child task.

	Parameters

	
	old (int [https://docs.python.org/3/library/functions.html#int]) – Index at which the child to move is currently located.

	new (BaseTask) – Index at which to insert the child task.

	
remove_child_task(index)

	Remove a child task from the children list.

	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – Index at which the child to remove is located.

	
gather_children()

	Build a flat list of all children task.

Children tasks are ordered according to their ‘child’ tag value.

	Returns

	children – List of all the task children.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
traverse(depth=- 1)

	Reimplemented to yield all child task.

	
register_in_database()

	Create a node in the database and register all entries.

This method registers both the task entries and all the tasks tagged
as child.

	
unregister_from_database()

	Unregister all entries and delete associated database node.

This method unregisters both the task entries and all the tasks tagged
as child.

	
register_preferences()

	Register the task preferences into the preferences system.

This method registers both the task preferences and all the
preferences of the tasks tagged as child.

	
update_preferences_from_members()

	Update the values stored in the preference system.

This method updates both the task preferences and all the
preferences of the tasks tagged as child.

	
classmethod build_from_config(config, dependencies)

	Create a new instance using the provided infos for initialisation.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str])) – Dictionary holding the new values to give to the members in string
format, or dictionnary like for instance with prefs.

	dependencies (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary holding the necessary classes needed when rebuilding.
This is assembled by the TaskManager.

	Returns

	task – Newly created and initiliazed task.

	Return type

	BaseTask

Notes

This method is fairly powerful and can handle a lot of cases so
don’t override it without checking that it works.

	
name

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
root

	A Typed which delays resolving the type definition.

The first time the value is accessed or modified, the type will
be resolved and the forward typed will behave identically to a
normal typed.

	
class exopy.tasks.tasks.base_tasks.RootTask(*args, **kwargs)

	Bases: exopy.tasks.tasks.base_tasks.ComplexTask

Special task which is always the root of a measurement.

On this class and this class only perform can and should be called
directly.

	
default_path

	Path to which log infos, preferences, etc should be written by default.

	
should_profile

	Should the execution be profiled.

	
run_time

	drivers classes)

	Type

	Dict storing data needed at execution time (ex

	
should_stop

	Inter-process event signaling the task it should stop execution.

	
should_pause

	Inter-process event signaling the task it should pause execution.

	
paused

	Inter-process event signaling the task is paused.

	
resumed

	Inter-process event signaling the main thread is done, handling the
measurement resuming, and hence notifying the task execution has
resumed.

	
errors

	Dictionary used to store errors occuring during performing.

	
resources

	Dictionary used to store references to resources that may need to be
shared between task and which must be released when all tasks have been
performed.
Each key is associated to a different kind of resource. Resources must
be stored in SharedDict subclass.
By default three kind of resources exists:

	threads : used threads grouped by pool.

	active_threads : currently active threads.

	instrs : used instruments referenced by profiles.

	files : currently opened files by path.

	
active_threads_counter

	Counter keeping track of the active threads.

	
paused_threads_counter

	Counter keeping track of the paused threads.

	
thread_id

	Thread from which the perform method has been called.

	
has_root

	A value of type bool.

	
name

	A value which cannot be changed from its default.

	
depth

	A value which cannot be changed from its default.

	
path

	A value which cannot be changed from its default.

	
database_entries

	A value of type dict.

	
check(*args, **kwargs)

	Check that the default path is a valid directory.

	
perform()

	Run sequentially all child tasks, and close ressources.

	
prepare()

	Optimise the database for running state and prepare children.

	
release_resources()

	Release all the resources used by tasks.

	
register_in_database()

	Don’t create a node for the root task.

	
classmethod build_from_config(config, dependencies)

	Create a new instance using the provided infos for initialisation.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str])) – Dictionary holding the new values to give to the members in string
format, or dictionnary like for instance with prefs.

	dependencies (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary holding the necessary classes needed when rebuilding.
This is assembled by the TaskManager.

	Returns

	task – Newly created and initiliazed task.

	Return type

	RootTask

Notes

This method is fairly powerful and can handle a lot of cases so
don’t override it without checking that it works.

	
task_id

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

exopy.tasks.tasks.base_views module

Definition of the base views for the tasks.

If need be one can inherit from an enamldef class to build a new class using
class.

	
class exopy.tasks.tasks.base_views.BaseTaskView(parent=None, **kwargs)

	Bases: exopy.utils.enaml_destroy_hook.add_destroy_hook.<locals>.Destroyable

Base class for all task views.

	
refresh

	

	
root

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
task

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.tasks.tasks.base_views.ComplexTaskView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.BaseTaskView

View for complex tasks.

	
editor

	

	
refresh

	

	
class exopy.tasks.tasks.base_views.RootTaskView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.BaseTaskView

Special view for the root task.

This view must always exists as it is responsible for managing the views
for the whole hierarchy.

	
core

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
create_new_task

	

	
discard_view

	

	
get_interfaces_for

	

	
refresh

	

	
view_for

	

exopy.tasks.tasks.database module

Definition of the base tasks.

The base tasks define how task interact between them and with the database, how
ressources can be shared and how preferences are handled.

	
class exopy.tasks.tasks.database.DatabaseNode

	Bases: atom.atom.Atom

Helper class to differentiate nodes and dict in database

	
parent

	Reference to the parent node.

	
data

	Actual data hold by this node.

	
meta

	Metadata associated with this node such as access exceptions.

	
class exopy.tasks.tasks.database.TaskDatabase

	Bases: atom.atom.Atom

A database for inter tasks communication.

The database has two modes:

	an edition mode in which the number of entries and their hierarchy
can change. In this mode the database is represented by a nested dict.

	a running mode in which the entries are fixed (only their values can
change). In this mode the database is represented as a flat list.
In running mode the database is thread safe but the object it contains
may not be so (dict, list, etc)

	
notifier

	Signal used to notify a value changed in the database.
In edition mode the update is passed as a tuple (‘added’, path, value)
for creation, as (‘renamed’, old, new, value) in case of renaming,
(‘removed’, old) in case of deletion or as a list of such tuples.
In running mode, a 2-tuple (path, value) is sent as entries cannot be
renamed or removed.

	
access_notifier

	Signal emitted to notify that access exceptions has changed. The update
is passed as a tuple (‘added’, path, relative, entry) for creation or as
(‘renamed’, path, relative, old, new) in case of renaming of the related
entry, (‘removed’, path, relative, old) in case of deletion (if old is
None all exceptions have been removed) or as a list of such tuples.
Path indicate the node where the exception is located, relative the
relative path from the ‘path’ node to the real location of the entry.

	
nodes_notifier

	Signal emitted to notify that the nodes were modified. The update
is passed as a tuple (‘added’, path, name, node) for creation or as
(‘renamed’, path, old, new) in case of renaming of the related node,
(‘removed’, path, old) in case of deletion or as a list of such tuples.

	
excluded

	List of root entries which should not be listed.

	
running

	Flag indicating whether or not the database entered the running mode. In
running mode the database is flattened into a list for faster acces.

	
set_value(node_path, value_name, value)

	Method used to set the value of the entry at the specified path

This method can be used both in edition and running mode.

	Parameters

	
	node_path (unicode) – Path to the node holding the value to be set

	value_name (unicode) – Public key associated with the value to be set, internally
converted so that we do not mix value and nodes

	value (any) – Actual value to be stored

	Returns

	new_val – Boolean indicating whether or not a new entry has been created in
the database

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_value(assumed_path, value_name)

	Method to get a value from the database from its name and a path

This method returns the value stored under the specified name. It
starts looking at the specified path and if necessary goes up in the
hierarchy.

	Parameters

	
	assumed_path (unicode) – Path where we start looking for the entry

	value_name (unicode) – Name of the value we are looking for

	Returns

	value – Value stored under the entry value_name

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	
rename_values(node_path, old, new, access_exs=None)

	Rename database entries.

This method can update the access exceptions attached to them.
This method cannot be used in running mode.

	Parameters

	
	node_path (unicode) – Path to the node holding the value.

	old (iterable) – Old names of the values.

	new (iterable) – New names of the values.

	access_exs (iterable, optional) – Dict mapping old entries names to how far the access exception is
located.

	
delete_value(node_path, value_name)

	Remove an entry from the specified node

This method remove the specified entry from the specified node. It does
not handle removing the access exceptions attached to it. This
method cannot be used in running mode.

	Parameters

	
	assumed_path (unicode) – Path where we start looking for the entry

	value_name (unicode) – Name of the value we are looking for

	
get_values_by_index(indexes, prefix=None)

	Access to a list of values using the flat database.

	Parameters

	
	indexes (list [https://docs.python.org/3/library/stdtypes.html#list](int [https://docs.python.org/3/library/functions.html#int])) – List of index for which values should be returned.

	prefix (unicode, optional) – If provided return the values in dict with key of the form :
prefix + index.

	Returns

	values – List of requested values in the same order as indexes or dict if
prefix was not None.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_entries_indexes(assumed_path, entries)

	Access to the index in the flattened database for some entries.

	Parameters

	
	assumed_path (unicode) – Path to the node in which the values are assumed to be stored.

	entries (iterable(unicode)) – Names of the entries for which the indexes should be returned.

	Returns

	indexes – Dict mapping the entries names to their index in the flattened
database.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
list_accessible_entries(node_path)

	Method used to get a list of all entries accessible from a node.

DO NOT USE THIS METHOD IN RUNNING MODE (ie never in the check method
of a task, use a try except clause instead and get_value or
get_entries_indexes).

	Parameters

	node_path (unicode) – Path to the node from which accessible entries should be listed.

	Returns

	entries_list – List of entries accessible from the specified node

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](unicode)

	
list_all_entries(path='root', values=False)

	List all entries in the database.

	Parameters

	
	path (unicode, optional) – Starting node. This parameters is for internal use only.

	values (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to return the values associated with the entries.

	Returns

	paths – List of all accessible entries with their full path.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](unicode) or dict if values

	
add_access_exception(node_path, entry_node, entry)

	Add an access exception in a node for an entry located in a node
below.

	Parameters

	
	node_path (unicode) – Path to the node which should hold the exception.

	entry_node (unicode) – Absolute path to the node holding the entry.

	entry (unicode) – Name of the entry for which to create an exception.

	
remove_access_exception(node_path, entry=None)

	Remove an access exception from a node for a given entry.

	Parameters

	
	node_path (unicode) – Path to the node holding the exception.

	entry (unicode, optional) – Name of the entry for which to remove the exception, if not
provided all access exceptions will be removed.

	
create_node(parent_path, node_name)

	Method used to create a new node in the database

This method creates a new node in the database at the specified path.
This method is not thread safe safe as the hierarchy of the tasks’
database is not supposed to change during a measurement but only during
the configuration phase

	Parameters

	
	parent_path (unicode) – Path to the node parent of the new one

	node_name (unicode) – Name of the new node to create

	
rename_node(parent_path, old_name, new_name)

	Method used to rename a node in the database

	Parameters

	
	parent_path (unicode) – Path to the parent of the node being renamed

	old_name (unicode) – Old name of the node.

	node_name (unicode) – New name of node

	
delete_node(parent_path, node_name)

	Method used to delete an existing node from the database

	Parameters

	
	parent_path (unicode) – Path to the node parent of the new one

	node_name (unicode) – Name of the new node to create

	
copy_node_values(node='root')

	Copy the values (ie not subnodes) found in a node.

	Parameters

	node (unicode, optional) – Path to the node to copy.

	Returns

	copy – Copy of the node values.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
prepare_to_run()

	Enter a thread safe, flat database state.

This is used when tasks are executed.

	
list_nodes()

	List all the nodes present in the database.

	Returns

	nodes – Dictionary storing the nodes by path

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
go_to_path(path)

	Method used to reach a node specified by a path.

exopy.tasks.tasks.decorators module

Definition of the base tasks.

The base tasks define how task interact between them and with the database, how
ressources can be shared and how preferences are handled.

	
exopy.tasks.tasks.decorators.handle_stop_pause(root)

	Check the state of the stop and pause event and handle the pause.

When the pause stops the main thread take care of re-initializing the
driver owners (so that any user modification shoudl not cause a crash) and
signal the other threads it is done by setting the resume flag.

	Parameters

	root (RootTask) – RootTask of the hierarchy.

	Returns

	exit – Whether or not the function returned because should_stop was set.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]

	
exopy.tasks.tasks.decorators.make_stoppable(function_to_decorate)

	Decorator allowing to stop or pause at the beginning of a task.

This is applied the perform method of every task marked as stoppable. This
check is performed before dealing with parallelism or waiting.

	
exopy.tasks.tasks.decorators.smooth_crash(function_to_decorate)

	This decorator ensures that any unhandled error will cause the measurement
to stop in a nice way. It is always present at the root call of any thread.

	
class exopy.tasks.tasks.decorators.ThreadDispatcher(perform, pool)

	Bases: atom.atom.Atom

Dispatch calling a function to a thread.

	
inactive

	Flag set when the thread is ready to accept new jobs.

	
dispatch(task, *args, **kwargs)

	Dispatch the work to the background thread.

	
stop()

	Stop the background thread.

	
exopy.tasks.tasks.decorators.make_parallel(perform, pool)

	Machinery to execute perform in parallel.

Create a wrapper around a method to execute it in a thread and register the
thread.

	Parameters

	
	perform (method) – Method which should be wrapped to run in parallel.

	pool (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the execution pool to which the created thread belongs.

	
exopy.tasks.tasks.decorators.make_wait(perform, wait, no_wait)

	Machinery to make perform wait on other tasks execution.

Create a wrapper around a method to wait for some threads to terminate
before calling the method. Threads are grouped in execution pools.
This method supports new threads being started while it is waiting.

	Parameters

	
	perform (method) – Method which should be wrapped to wait on threads.

	wait (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – Names of the execution pool which should be waited for.

	no_wait (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – Names of the execution pools which should not be waited for.

	parameters are mutually exlusive. If both lists are empty the (Both) –

	will be deffered till all the execution pools have completed (execution) –

	works. (their) –

exopy.tasks.tasks.instr_task module

Base class for tasks needing to access an instrument.

	
class exopy.tasks.tasks.instr_task.InstrumentTask(**kwargs)

	Bases: exopy.tasks.tasks.base_tasks.SimpleTask

Base class for all tasks calling instruments.

	
selected_instrument

	Selected instrument as (profile, driver, collection, settings) tuple

	
driver

	Instance of instrument driver.

	
check(*args, **kwargs)

	Chech that the provided informations allows to establish the
connection to the instrument.

	
prepare()

	Always start the driver.

	
start_driver()

	Create an instance of the instrument driver and connect it.

	
test_driver()

	Safe temporary access to the driver to run some checks.

Yield either a fully initialized driver or None.

exopy.tasks.tasks.instr_view module

Base view for task needing to access an instrument.

	
class exopy.tasks.tasks.instr_view.InstrTaskView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.BaseTaskView

Base view for task needing to connect to an instrument.

This provides the facilities to select the appropriate instrument profile.

	
filter_drivers

	

	
filter_profiles

	

	
instr_label

	

	
instr_selection

	

	
make_selected_instrument_tooltip

	

	
select_interface

	

exopy.tasks.tasks.shared_resources module

Thread safe object to use in tasks.

	
class exopy.tasks.tasks.shared_resources.SharedCounter

	Bases: atom.atom.Atom

Thread-safe counter object.

	
count

	Current count of the counter. User should not manipulate this directly.

	
increment()

	Increment the counter by one.

	
decrement()

	Decrement the counter by one.

	
class exopy.tasks.tasks.shared_resources.SharedDict(default=None, **kwargs)

	Bases: atom.atom.Atom

Dict wrapper using a lock to protect access to its values.

	Parameters

	default (callable, optional) – Callable to use as argument for defaultdict, if unspecified a regular
dict is used.

	
safe_access(key)

	Context manager to safely manipulate a value of the dict.

	
locked()

	Acquire the instance lock.

	
get(key, default=None)

	Equivalent of dict.get but lock protected.

	
items()

	Equivalent of dict.items but lock protected.

	
class exopy.tasks.tasks.shared_resources.ResourceHolder(default=None, **kwargs)

	Bases: exopy.tasks.tasks.shared_resources.SharedDict

Base class for storing resources and handling releases and restting.

	
priority

	Priority determining in which order resources will be released.
Smallest values will be released earlier.

	
release()

	Release the resources held by this container.

This method should be safe to call on already released resources.

	
reset()

	Reset the resources.

This is different from releasing. This method is typically called when
resuming a measurement to ensure that the state of the resources can be
trusted inspite of the interruption.

	
class exopy.tasks.tasks.shared_resources.ThreadPoolResource(default=<class 'list'>, **kwargs)

	Bases: exopy.tasks.tasks.shared_resources.ResourceHolder

Resource holder specialized to handle threads grouped in pools.

	
priority

	A value of type int.

By default, ints are strictly typed. Pass strict=False to the
constructor to enable int casting for longs and floats.

	
release()

	Join all the threads still alive.

	
class exopy.tasks.tasks.shared_resources.InstrsResource(default=None, **kwargs)

	Bases: exopy.tasks.tasks.shared_resources.ResourceHolder

Resource holder specialized to handle instruments.

Each driver instance should be stored as a 2-tuple with its associated
starter. (driver, starter)

	
release()

	Finalize all the opened connections.

	
reset()

	Clean the cache of all drivers to avoid corrupted value due to
user interferences.

	
class exopy.tasks.tasks.shared_resources.FilesResource(default=None, **kwargs)

	Bases: exopy.tasks.tasks.shared_resources.ResourceHolder

Resource holder specialized in handling standard file descriptors.

	
release()

	Close all the opened files.

exopy.tasks.tasks.string_evaluation module

Definition of the base tasks.

The base tasks define how task interact between them and with the database, how
ressources can be shared and how preferences are handled.

	
exopy.tasks.tasks.string_evaluation.safe_eval(expr, local_var)

	Eval expr save is expr contains only letters.

exopy.tasks.tasks.task_editor module

Widget used to edit a list of tasks.

	
class exopy.tasks.tasks.task_editor.EmptyEditorButton(parent=None, **kwargs)

	Bases: enaml.widgets.push_button.PushButton

Button displayed when the edited list of task is empty.

	
editor

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.tasks.tasks.task_editor.FoldableTaskEditor(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Task editor which can be masked.

	
operations

	

	
refresh

	

	
root

	

	
show_editor

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
task

	

	
class exopy.tasks.tasks.task_editor.TaskEditor(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Custom container used to edit a list of tasks.

	
destroy()

	Overriden destroyer to remove observers.

	
initialize()

	Overridden initializer to setup member observers.

	
layout_constraints()

	Build the constraints based on the children member order.

	
operations

	A value which cannot be changed from its default.

	
padding

	A member which will coerce a value to a given instance type.

Unlike Typed or Instance, a Coerced value is not intended to be
set to None.

	
refresh()

	Ensure that all child views are visible and correctly parented.

	
root

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
task

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
class exopy.tasks.tasks.task_editor.TaskEditorButton(parent=None, **kwargs)

	Bases: enaml.widgets.push_button.PushButton

A push button displayed on the right of a task in the editor.

This button generates a popup menu which is used to add, move and remove
task directly from the editor.

	
editor

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
task

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.tasks.tasks.task_interface module

Definition of the base classes for interfaces in tasks.

	
exopy.tasks.tasks.task_interface.DEP_TYPE = 'exopy.tasks.interface'

	Id used to identify dependencies type.

	
class exopy.tasks.tasks.task_interface.InterfaceableMixin

	Bases: atom.atom.Atom

Base class for mixin used to fabricate interfaceable task or interface.

This class should not be used directly, use one of its subclass.

	
interface

	A reference to the current interface for the task.

	
check(*args, **kwargs)

	Check the interface.

This run the checks of the next parent class in the mro and check
if a valid interface (real or default one) exists.

	
prepare()

	Prepare both the task and the interface.

	
perform(*args, **kwargs)

	Implementation of perform relying on interfaces.

This method will be considered as the true perform method of the task,
it will either call the interface perform method or the special
i_perform method if there is no interface. This is meant to provide
an easy way to turn a non-interfaced task into an interfaced one :
- add the mixin as the left most inherited class
- rename the perform method to i_perform
- create new interfaces but keep the default ‘standard’ behaviour.

NEVER OVERRIDE IT IN SUBCLASSES OTHERWISE YOU WILL BREAK THE
INTERFACE SYSTEM.

	
traverse(depth=- 1)

	First yield self then interface and finally next values.

	
classmethod build_from_config(config, dependencies)

	Create a new instance using the provided infos for initialisation.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str])) – Dictionary holding the new values to give to the members in string
format, or dictionnary like for instance with prefs.

	dependencies (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary holding the necessary classes needed when rebuilding.
This is assembled by the TaskManager.

	Returns

	task – Newly built task.

	Return type

	BaseTask

	
get_error_path()

	Build the path to use when reporting errors during checks.

	
class exopy.tasks.tasks.task_interface.InterfaceableTaskMixin

	Bases: exopy.tasks.tasks.task_interface.InterfaceableMixin

Mixin class for defining a task using interfaces.

When defining a new interfaceable task this mixin should always be the
letf most class when defining the inheritance. This is due to the Python
Method Resolution Order (mro) and the fact that this mixin must override
methods defined in tasks.
ex : MyTaskI(InterfaceableTaskMixin, MyTask):

	
register_preferences()

	Register the task preferences into the preferences system.

	
update_preferences_from_members()

	Update the values stored in the preference system.

	
get_error_path()

	Build the path to use when reporting errors during checks.

	
interface

	A Typed which delays resolving the type definition.

The first time the value is accessed or modified, the type will
be resolved and the forward typed will behave identically to a
normal typed.

	
class exopy.tasks.tasks.task_interface.InterfaceableInterfaceMixin

	Bases: exopy.tasks.tasks.task_interface.InterfaceableMixin

Mixin class for defining an interface using interfaces.

When defining a new interfaceable task this mixin should always be the
letf most class when defining the inheritance. This is due to the Python
Method Resolution Order (mro) and the fact that this mixin must override
methods defined in tasks.
ex : MyInterface(InterfaceableTaskMixin, Interface):

	
get_error_path()

	Build the path to use when reporting errors during checks.

	
preferences_from_members()

	Update the values stored in the preference system.

	
interface

	A Typed which delays resolving the type definition.

The first time the value is accessed or modified, the type will
be resolved and the forward typed will behave identically to a
normal typed.

	
class exopy.tasks.tasks.task_interface.BaseInterface

	Bases: exopy.utils.atom_util.HasPrefAtom

Base class to use for interfaces.

The interface should not re-use member names used by the task to avoid
issue when walking.

This class should not be used directly, use one of its subclass.

	
dep_type

	Identifier for the build dependency collector

	
interface_id

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
database_entries

	Dict of database entries added by the interface.

	
check(*args, **kwargs)

	Check that everything is alright before starting a measurement.

By default tries to format all members tagged with ‘fmt’ and try to
eval all members tagged with ‘feval’. If the tag value is ‘Warn’, the
test will considered passed but a traceback entry will be filled.

	
prepare()

	Prepare the interface to be performed.

This method is called once by the parent task before starting the
execution.

	
perform(*args, **kwargs)

	Method called by the parent perform method.

	
traverse(depth=- 1)

	Method used by to retrieve information about a task.

	Parameters

	depth (int [https://docs.python.org/3/library/functions.html#int]) – How deep should we stop traversing.

	
classmethod build_from_config(config, dependencies)

	Create an interface using the provided dict.

	
class exopy.tasks.tasks.task_interface.TaskInterface

	Bases: exopy.tasks.tasks.task_interface.BaseInterface

Base class to use when writing a task interface.

The interface should not re-use member names used by the task to avoid
issue when walking.

	
task

	A reference to the task to which this interface is linked.

	
class exopy.tasks.tasks.task_interface.IInterface

	Bases: exopy.tasks.tasks.task_interface.BaseInterface

Base class to use when writing an interface interface.

The interface should not re-use member names used by the task or parent
interfaces to avoid issue when walking.

	
parent

	A reference to the parent interface to which this interface is linked.

	
task

	Direct access to the task, which acts as a root parent.

exopy.tasks.tasks.validators module

Validators for feval members.

	
class exopy.tasks.tasks.validators.Feval

	Bases: atom.atom.Atom

Object hanlding the validation of feval tagged member.

	
types

	Allowed types for the result of the evaluation of the member.

	
warn

	Should the validator propagate an error or simply warn the user.

	
check(task_or_interface, member)

	Validate the feval formula.

	
should_test(task, str_value)

	Should the value actually be tested given its value and the task.

	
validate(task, value)

	Validate that the value resulting from the evaluation makes sense.

	
class exopy.tasks.tasks.validators.SkipEmpty

	Bases: exopy.tasks.tasks.validators.Feval

Specialized validator skipping empty fields.

	
should_test(task, str_value)

	Only test if a formula is provided.

	
class exopy.tasks.tasks.validators.SkipLoop

	Bases: exopy.tasks.tasks.validators.Feval

Specialized validator skipping empty field if task is embedded inside
a LoopTask.

	
should_test(task, str_value)

	Only test if not embedded in a LoopTask.

exopy.tasks.utils package

Submodules

	exopy.tasks.utils.building module

	exopy.tasks.utils.saving module

	exopy.tasks.utils.templates module

exopy.tasks.utils.building module

This module implements command handler related to building tasks.

	
exopy.tasks.utils.building.create_task(event)

	Open a dialog to include a task in a task hierarchy.

This function is meant to be used as a Command handler. Parameters are
passed through the parameters attributes of the event object.

	Parameters

	
	widget (optional) – Optional parent widget for the dialog.

	Returns –

	------- –

	task (BaseTask) – Task selected by the user to be added to a hierarchy.

	
exopy.tasks.utils.building.build_task_from_config(config, build_dep, as_root=False)

	Rebuild a task hierarchy from a dictionary.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary representing the task hierarchy.

	build_dep (Workbench or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Source of the build dependencies of the hierarchy. This can either
be the application workbench or a dict of dependencies.

	as_root (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Allow to force building a ComplexTask as a RootTask

	Returns

	task – Newly built task.

	Return type

	BaseTask

	Raises

	RuntimeError : – Raised if a dependency cannot be collected.

	
exopy.tasks.utils.building.build_root(event)

	Create a new RootTask.

This function is meant to be used as a Command handler. Parameters are
passed through the parameters attributes of the event object.

	Parameters

	
	mode ({'from config', 'from template'}) – Whether to use the given config, or look for one in templates or a
file.

	config (configobj.Section) – Object holding the informations necessary to build the root task.

	widget (optional) – Optional parent widget for the dialog (‘from template’ mode only).

	build_dep (optional) – Optionnal dict containing the build dependencies.

	Returns –

	------- –

	task (RootTask) –

exopy.tasks.utils.saving module

Handler for the commands used to save tasks.

	
exopy.tasks.utils.saving.save_task(event)

	Save a task in memory or in an .ini file.

	Parameters

	
	task (BaseTask) – Task to save.

	mode ({'config', 'template'}) – Should the task be returned as a dict (ConfigObj) or saved as a,
template.

	widget (optional) – Optional widget to use as a parent for the dialog when savind as
template.

	Returns –

	------- –

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – A dict is returned if the mode is ‘config’.

exopy.tasks.utils.templates module

Utility function to manipulate template files.

	
exopy.tasks.utils.templates.load_template(path)

	Load the informations stored in a template.

	Parameters

	path (unicode) – Location of the template file.

	Returns

	
	data (ConfigObj) – The data needed to rebuild the tasks.

	doc (unicode) – The doc of the template.

	
exopy.tasks.utils.templates.save_template(path, data, doc)

	Save a template to a file

	Parameters

	
	path (unicode) – Path of the file to which save the template

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionnary containing the tempate parameters

	doc (unicode) – The template doc

exopy.tasks.widgets package

Submodules

	exopy.tasks.widgets.browsing module

	exopy.tasks.widgets.building module

	exopy.tasks.widgets.saving module

exopy.tasks.widgets.browsing module

Widget allowing to browse the different tasks known to the manager.

	
class exopy.tasks.widgets.browsing.TaskSelector(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Basic widget displaying a list of tasks acording to the selected filter.

	
display_filters

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
manager

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
selected_filter

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
selected_task

	

	
tasks

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
exopy.tasks.widgets.browsing.normalize_name(name)

	Normalize names.

For tasks, replaces ‘_’ by spaces and add spaces between ‘aA’ sequences.
For templates, only the extension file is removed.

exopy.tasks.widgets.building module

Widgets dedicated to the construction of new tasks.

	
class exopy.tasks.widgets.building.BuilderView(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog to select a task and get the associate config.

	
config

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
manager

	

	
selector

	

	
class exopy.tasks.widgets.building.TemplateSelector(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Simple dialog to select a template.

	
manager

	

	
path

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
selector

	

	
exopy.tasks.widgets.building.abstract_config_task()

	

	
exopy.tasks.widgets.building.task_manager()

	

exopy.tasks.widgets.saving module

Widgets dedicated to saving tasks.

	
class exopy.tasks.widgets.saving.TemplateSaverDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Simple dialog to save a template.

	
get_infos

	

	
manager

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
show_result

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.tasks.widgets.saving.TemplateSaverModel(**kwargs)

	Bases: atom.atom.Atom

Model for the Template saver dialog.

	
accept_template_info(ui)

	Whether or not the provided infos allows to save the template.

	Parameters

	ui – Widget calling this method, used as a parent for the dialogs
this method might need to open.

	
doc

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
filename

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
folder

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
manager

	A Typed which delays resolving the type definition.

The first time the value is accessed or modified, the type will
be resolved and the forward typed will behave identically to a
normal typed.

	
ready

	A value of type bool.

	
class exopy.tasks.widgets.saving.TemplateViewer(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog to display a template file.

	
text

	

	
exopy.tasks.widgets.saving.task_manager()

	

exopy.tasks.declarations module

Enaml objects used to declare tasks and interfaces in a plugin manifest.

	
exopy.tasks.declarations.check_children(declarator)

	Make sure that all the children of a declarator are interfaces.

	Returns

	msg – Error message if one wrongly-typed child was found or None

	Return type

	unicode or None [https://docs.python.org/3/library/constants.html#None]

	
class exopy.tasks.declarations.Tasks(parent=None, **kwargs)

	Bases: exopy.utils.declarator.GroupDeclarator

GroupDeclarator for tasks.

Tasks will be stored according to the group of their parent.

	
class exopy.tasks.declarations.Task(parent=None, **kwargs)

	Bases: exopy.utils.declarator.Declarator

Declarator used to contribute a task.

	
task

	Path to the task object. Path should be dot separated and the class
name preceded by ‘:’.
ex: exopy.tasks.tasks.logic.loop_task:LoopTask
The path of any parent GroupDeclarator object will be prepended to it.
To update existing TaskInfos (only instruments and interfaces can be
updated that way), one can specify the name of the top level package
in which the task is defined followed by its name.
ex: exopy.LoopTask

	
view

	Path to the view object associated with the task.
The path of any parent GroupDeclarator object will be prepended to it.

	
metadata

	loopable = True

	Type

	Metadata associated to the task. ex

	
instruments

	List of supported driver ids.

	
dependencies

	Runtime dependencies analyser ids corresponding to the runtime
dependencies of the task (there is no need to list the instruments
related dependencies as those are handled in a different fashion).

	
id

	Id of the task computed from the top-level package and the task name

	
register(collector, traceback)

	Collect task and view and add infos to the DeclaratorCollector
contributions member.

The group declared by a parent if any is taken into account. All
Interface children are also registered.

	
unregister(collector)

	Remove contributed infos from the collector.

	
class exopy.tasks.declarations.Interfaces(parent=None, **kwargs)

	Bases: exopy.utils.declarator.GroupDeclarator

GroupDeclarator for interfaces.

The group value is not used by interfaces.

	
class exopy.tasks.declarations.Interface(parent=None, **kwargs)

	Bases: exopy.utils.declarator.Declarator

Declarator for task interfaces.

An interface can be declared as a child of the task to which its contribute
in which case the task member can be omitted.

	
interface

	Path to the interface object. Path should be dot separated and the class
name preceded by ‘:’. If only the interface name is provided it will be
used to update the corresponding InterfaceInfos.
Example :
exopy.tasks.tasks.logic.loop_linspace_interface:LinspaceLoopInterface
The path of any parent GroupDeclarator object will be prepended to it.

	
views

	Path or tuple of paths to the view objects associated with the interface
The path of any parent GroupDeclarator object will be prepended to it.

	
extended

	Name of the task/interfaces to which this interface contribute. If this
interface contributes to a task then the task id is enough, if it
contributes to an interface a list with the ids of the tasks and all
intermediate interfaces id should be provided.
When declared as a child of a Task/Interface the names are inferred from
the parents.

	
instruments

	List of supported driver names.

	
dependencies

	Runtime dependencies analyser ids corresponding to the runtime
dependencies of the interface (there is no need to list the instruments
related dependencies as those are handled in a different fashion).

	
id

	Id of the interface computed from the parents ids and the interface name

	
register(collector, traceback)

	Collect interface and views and add infos to the collector.

	
unregister(collector)

	Remove contributed infos from the collector.

	
class exopy.tasks.declarations.TaskConfigs(parent=None, **kwargs)

	Bases: exopy.utils.declarator.GroupDeclarator

GroupDeclarator for task configs.

	
class exopy.tasks.declarations.TaskConfig(parent=None, **kwargs)

	Bases: exopy.utils.declarator.Declarator

Declarator used to declare a task config.

	
config

	Path to the config object. Path should be dot separated and the class
name preceded by ‘:’.
ex: exopy.tasks.config.base_config:PyConfigTask
The path of any parent GroupDeclarator object will be prepended to it.

	
view

	Path to the view object associated with the task.
The path of any parent GroupDeclarator object will be prepended to it.

	
id

	Id of the config computed from the top-level package and the config name

	
get_task_class()

	Return the base task class this config is used for.

	
register(collector, traceback)

	Collect config and view and add infos to the DeclaratorCollector
contributions member under the supported task name.

	
unregister(collector)

	Remove contributed infos from the collector.

exopy.tasks.filters module

Modules defining the basic filters.

The filter available by default are declared in the manager manifest.

	
class exopy.tasks.filters.TaskFilter(parent=None, **kwargs)

	Bases: exopy.utils.declarator.Declarator

Base class for all task filters.

	
id

	Unique id of this filter (also used as a name).

	
filter_tasks(tasks, templates)

	Filter the task known by the manager.

By default all task are returned.

	Parameters

	
	tasks (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of known python tasks as name : TaskInfos.

	templates (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of known templates as name : path

	Returns

	task_names – List of the name of the task matching the filters criteria.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])

	
class exopy.tasks.filters.SubclassTaskFilter(parent=None, **kwargs)

	Bases: exopy.tasks.filters.TaskFilter

Filter keeping only the python tasks which are subclass of subclass.

	
subclass

	Class from which the task must inherit.

	
filter_tasks(tasks, templates)

	Keep only the task inheriting from the right class.

	
class exopy.tasks.filters.MetadataTaskFilter(parent=None, **kwargs)

	Bases: exopy.tasks.filters.TaskFilter

Filter keeping only the python tasks with the right class attribute.

	
meta_key

	Metadata key to match.

	
meta_value

	Metadata value to match.

	
filter_tasks(tasks, templates)

	Keep only the task with the right class attribute.

	
class exopy.tasks.filters.GroupTaskFilter(parent=None, **kwargs)

	Bases: exopy.tasks.filters.MetadataTaskFilter

Filter keeping only the python tasks from the right group.

	
group

	Group to which the tasks must belong.

	
meta_key

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
meta_value

	A Member which behaves similar to a Python property.

exopy.tasks.infos module

Objects used to store tasks, interfaces and configs in the manager.

	
class exopy.tasks.infos.ObjectDependentInfos(**kwargs)

	Bases: atom.atom.Atom

Base infos for tasks and interfaces.

	
DRIVER_ANALYSER

	Id of the runtime dependency analyser to use for driver detection to add
to the dependencies if instruments is set.

	
PROFILE_ANALYSER

	Id of the runtime dependency analyser to use for profile detection to
add to the dependencies if instruments is set.

	
instruments

	Set of instrument supported by this task. This should never be updated
in place, it should always be copied and replaced by the new value.

	
dependencies

	Runtime dependencies ids of this object.

	
interfaces

	InterfaceInfos}.

	Type

	Dict of interfaces supported by this object as {id

	
walk_interfaces(depth=None)

	Yield all the interfaces of a task/interfaces.

	Parameters

	depth (int | None) – Interface depth at which to stop.

	
class exopy.tasks.infos.TaskInfos(**kwargs)

	Bases: exopy.tasks.infos.ObjectDependentInfos

An object used to store informations about a task.

	
cls

	Class representing this task.

	
view

	Widget associated with this task.

	
metadata

	Metadata associated with this task such as group, looping capabilities,
etc

	
DRIVER_ANALYSER

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
PROFILE_ANALYSER

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
class exopy.tasks.infos.InterfaceInfos(**kwargs)

	Bases: exopy.tasks.infos.ObjectDependentInfos

An object used to store informations about an interface.

	
cls

	Class representing this interface.

	
views

	Widgets associated with this interface.

	
parent

	Parent task or interface infos.

	
DRIVER_ANALYSER

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
PROFILE_ANALYSER

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
class exopy.tasks.infos.ConfigInfos

	Bases: atom.atom.Atom

An object used to store the informations about a task configurer.

	
cls

	Class representing this configurer.

	
view

	Widget associated with this configurer.

exopy.tasks.manifest module

Plugin centralizing the collect and management of tasks and interfaces.

	
class exopy.tasks.manifest.TasksManagerManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Manifest for the task manager.

	
exopy.tasks.manifest.manager_plugin_factory()

	Factory funcion for the task manager plugin.

exopy.tasks.plugin module

Plugin centralizing the collection and managment of tasks and interfaces.

	
class exopy.tasks.plugin.TaskManagerPlugin

	Bases: exopy.utils.plugin_tools.HasPreferencesPlugin

Plugin responsible for collecting and providing tasks.

	
templates

	Known templates (store full path to .ini).
This should not be manipulated by user code.

	
filters

	List of the filters.

	
auto_task_path

	Path to the file in which the names for the tasks are located.

	
auto_task_names

	List of names to use when creating a new task.

	
start()

	Collect all declared tasks and start observers.

	
stop()

	Discard collected tasks and remove observers.

	
list_tasks(filter='All')

	List the known tasks using the specified filter.

	Parameters

	filter (unicode, optional) – Name of the filter to use

	Returns

	tasks – Task ids selected by the filter, or None if the filter does not
exist.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](unicode) or None [https://docs.python.org/3/library/constants.html#None]

	
get_task_infos(task)

	Access a given task infos.

	Parameters

	task (unicode) – Id of the task class for which to return the actual class.

	Returns

	infos – Object containing all the infos about the requested task.
This object should never be manipulated directly by user code.

	Return type

	TaskInfos or None [https://docs.python.org/3/library/constants.html#None]

	
get_task(task, view=False)

	Access a given task class.

	Parameters

	
	task (unicode) – Id of the task class for which to return the actual class.

	view (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to return the view assoicated with the task.

	Returns

	
	task_cls (type or None) – Class associated to the requested task or None if the task was not
found.

	task_view (EnamlDefMeta or None, optional) – Associated view if requested.

	
get_tasks(tasks)

	Access an ensemble of task classes.

	Parameters

	tasks (list [https://docs.python.org/3/library/stdtypes.html#list](unicode)) – Ids of the task classes for which to return the actual classes.

	Returns

	
	tasks_cls (dict) – Dictionary mapping the requested tasks to the actual classes.

	missing (list) – List of classes that were not found.

	
get_interface_infos(interface)

	Access a given interface infos.

	Parameters

	
	interface (unicode) – Id of the task this interface is linked to followed by the ids
of the intermediate interfaces if any and finally id of the
interface itself. All ids should be separated by ‘:’
ex ‘exopy.LoopTask:exopy.IterableLoopInterface’

	views (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to return the views assoicated with the interface.

	Returns

	infos – Object containing all the infos about the requested interface.
this object should never be manipulated directly by user code.

	Return type

	InterfaceInfos

	
get_interface(interface, views=False)

	Access a given interface class.

	Parameters

	
	interface (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][unicode|tuple|list]) –
	Name of the task class for which to return the actual class.

	Name of the task to which this interface is linked and names of
the intermediate interfaces if any (going from the most general
ones to the more specialised ones).

	views (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to return the views assoicated with the interface.

	Returns

	
	interface_cls (type or None) – Class corresponding to the requested interface or None if the class
was not found.

	views (list or None, optional) – List of views associated with the interface.

	
get_interfaces(interfaces)

	Access an ensemble of interface classes.

	Parameters

	interfaces (list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][unicode|tuple|list]]) – List of pairs (name of the interface class, corrisponding anchor)
for which to return the actual classes.

	Returns

	
	interfaces_cls (dict) – Dictionary mapping the requested interfaces to the actual classes.

	missing (list) – List of classes that were not found.

	
get_config(task_id)

	Access the proper config for a task.

	Parameters

	task (unicode) – Id of the task for which a config is required

	Returns

	config – Tuple containing the requested config object, and its
visualisation.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
load_auto_task_names()

	Generate a list of task names from a file.

exopy.testing package

Subpackages

	instruments
	Submodules

	tasks
	Submodules

Submodules

	exopy.testing.fixtures module

	exopy.testing.util module

	exopy.testing.windows module

exopy.testing.instruments package

Submodules

	exopy.testing.instruments.fixtures module

exopy.testing.instruments.fixtures module

Fixture for testing the instruments manager plugin.

	
exopy.testing.instruments.fixtures.instr_workbench(workbench, monkeypatch, app_dir, app)

	Setup the workbench in such a way that the instrs manager can be tested.

exopy.testing.tasks package

Submodules

	exopy.testing.tasks.fixtures module

	exopy.testing.tasks.util module

exopy.testing.tasks.fixtures module

Fixture for testing the task manager plugin.

	
exopy.testing.tasks.fixtures.task_workbench(workbench, monkeypatch, app_dir)

	Setup the workbench in such a way that the task manager can be tested.

	
exopy.testing.tasks.fixtures.root_view(task_workbench)

	Initialize a root view.

exopy.testing.tasks.util module

Utility object to test the execution of tasks.

	
class exopy.testing.tasks.util.CheckTask

	Bases: exopy.tasks.tasks.base_tasks.SimpleTask

Task keeping track of check and perform call and value passed to perform

	
check_called

	Number of time the check method has been called.

	
perform_called

	Number of time the perform method has been called.

	
perform_value

	Value passed to the perform method.

	
custom

	Function to call in the perform method

	
check(*args, **kwargs)

	Check that everything is alright before starting a measurement.

By default tries to format all members tagged with ‘fmt’ and try to
eval all members tagged with ‘feval’.

	
perform(value=None)

	Main method of the task called when the measurement is performed.

	
class exopy.testing.tasks.util.ExceptionTask

	Bases: exopy.tasks.tasks.base_tasks.SimpleTask

Task raising an exception when executed.

	
perform()

	Main method of the task called when the measurement is performed.

exopy.testing.fixtures module

Pytest fixtures.

	
exopy.testing.fixtures.EXOPY = ''

	Global variable storing the application folder path

	
exopy.testing.fixtures.DIALOG_SLEEP = 0

	Global variable linked to the –exopy-sleep cmd line option.

	
exopy.testing.fixtures.pytest_addoption(parser)

	Add command line options.

	
exopy.testing.fixtures.pytest_configure(config)

	Turn the –exopy-sleep command line into a global variable.

	
exopy.testing.fixtures.dialog_sleep()

	Return the time to sleep as set by the –exopy-sleep option.

	
exopy.testing.fixtures.sys_path()

	Detect installation path of exopy.

Automtically called, DOES NOT use directly. Use exopy_path to get the path
to the exopy directory.

	
exopy.testing.fixtures.watchdog_on_travis()

	Do not use inotify on travis as it tends to break builds.

	
exopy.testing.fixtures.app()

	Make sure a QtApplication is active.

	
exopy.testing.fixtures.windows(app)

	Fixture making sure the app is running and closing all windows.

	
exopy.testing.fixtures.app_dir(tmpdir)

	Fixture setting the app_directory.ini file for each test.

	
exopy.testing.fixtures.logger(caplog)

	Fixture returning a logger for testing and cleaning handlers afterwards.

	
exopy.testing.fixtures.process_and_sleep(windows, dialog_sleep)

	Function to process app events and sleep.

	
exopy.testing.fixtures.workbench()

	Create a workbench instance.

exopy.testing.util module

Generic utility functions for testing.

	
exopy.testing.util.exopy_path()

	Get the exopy path as determined by the sys_path fixture.

	
exopy.testing.util.process_app_events()

	Manually run the Qt event loop so that windows are shown and event
propagated.

	
exopy.testing.util.get_window(cls=<class 'enaml.widgets.window.Window'>)

	Convenience function running the event loop and returning the first
window found in the set of active windows.

	Parameters

	cls (type [https://docs.python.org/3/library/functions.html#type], optional) – Type of the window which should be returned.

	
exopy.testing.util.close_all_windows()

	Close all opened windows.

This should be used by all tests creating windows in a teardown step.

	
class exopy.testing.util.ScheduledClosing(cls, handler, op, skip_answer)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Scheduled closing of dialog.

	
exopy.testing.util.handle_dialog(op='accept', custom=<function <lambda>>, cls=<class 'enaml.widgets.dialog.Dialog'>, time=100, skip_answer=False)

	Automatically close a dialog opened during the context.

	Parameters

	
	op ({'accept', 'reject'}, optional) – Whether to accept or reject the dialog.

	custom (callable, optional) – Callable taking as only argument the dialog, called before accepting
or rejecting the dialog.

	cls (type [https://docs.python.org/3/library/functions.html#type], optional) – Dialog class to identify.

	time (float [https://docs.python.org/3/library/functions.html#float], optional) – Time to wait before handling the dialog in ms.

	skip_answer (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Skip answering to the dialog. If this is True the handler should handle
the answer itself.

	
exopy.testing.util.handle_question(answer)

	Handle question dialog.

	
exopy.testing.util.show_widget(widget)

	Show a widget in a window

	
exopy.testing.util.show_and_close_widget(widget)

	Show a widget in a window and then close it.

	
exopy.testing.util.set_preferences(workbench, preferences)

	Set the preferences stored in the preference plugin.

This function must be called before accessing any plugin relying on those
values.

	Parameters

	
	workbench – Application workbench.

	preferences (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary describing the preferences.

	
exception exopy.testing.util.ErrorDialogException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Error raised when patching the error plugin to raise rather than show a
dialog when exiting error gathering.

	
exopy.testing.util.signal_error_raise()

	Make the error plugin raise an exception when signaling.

	
exopy.testing.util.exit_on_err(self)

	Replacement function for exopy.app.errors plugin exit_error_gathering.

This function will raise instead of displaying a dialog. Useful to catch
unexpected errors.

Should be used in conjunction with the monkeypatch fixture.

	
class exopy.testing.util.CallSpy

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object simply monitoring how many times it gets called.

	
called

	

	
args

	

	
kwargs

	

	
class exopy.testing.util.ObjectTracker(cls, has_weakref=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object tracking instance of a given class exists.

It works by patching __new__ and keeping a WeakSet of the created objects.
So instances created before creating the tracker are not tracked.

If the objects are not weak referenceable you should set has_weakref to
False. By default objects inheriting from Atom are not weak referenceable.
It provides way to list the object referring alive objects to help tracking
ref leaks.

	
stop_tracking()

	Use to properly remove tracking.

	
property alive_instances

	Currently alive instances of the tracked objects.

	
list_referrers(exclude=[], depth=0)

	List all the referrers of the tracked objects.

Can exlude some objects and go to deeper levels (referrers of the
referrers) in which case reference to the first object are filtered.
References held by frames are also filtered

This function is mostly useful when tracking why an object that is
expected to be released is not.

exopy.testing.windows module

Window used to test widget.

	
class exopy.testing.windows.ContainerTestingWindow(parent=None, **kwargs)

	Bases: enaml.widgets.window.Window

Window used to test a container.

	
widget

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
workbench

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.testing.windows.DockItemTestingWindow(parent=None, **kwargs)

	Bases: enaml.widgets.window.Window

Window used to test a dock item.

	
area

	

	
set_layout

	

	
widget

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
workbench

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.testing.windows.PageTestingWindow(parent=None, **kwargs)

	Bases: enaml.widgets.window.Window

Window used to test a page.

	
widget

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
workbench

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.utils package

Subpackages

	widgets
	Submodules
	exopy.utils.widgets.dict_editor module

	exopy.utils.widgets.dict_tree_view module

	exopy.utils.widgets.list_editor module

	exopy.utils.widgets.qt_autoscroll_html module

	exopy.utils.widgets.qt_clipboard module

	exopy.utils.widgets.qt_completers module

	exopy.utils.widgets.qt_list_str_widget module

	exopy.utils.widgets.qt_tree_menu module

	exopy.utils.widgets.qt_tree_widget module

	exopy.utils.widgets.tree_nodes module

Submodules

	exopy.utils.atom_util module

	exopy.utils.configobj_ops module

	exopy.utils.container_change module

	exopy.utils.declarator module

	exopy.utils.enaml_destroy_hook module

	exopy.utils.flags module

	exopy.utils.mapping_utils module

	exopy.utils.plugin_tools module

	exopy.utils.priority_heap module

	exopy.utils.transformers module

	exopy.utils.watchdog module

exopy.utils.widgets package

Submodules

	exopy.utils.widgets.dict_editor module

	exopy.utils.widgets.dict_tree_view module

	exopy.utils.widgets.list_editor module

	exopy.utils.widgets.qt_autoscroll_html module

	exopy.utils.widgets.qt_clipboard module

	exopy.utils.widgets.qt_completers module

	exopy.utils.widgets.qt_list_str_widget module

	exopy.utils.widgets.qt_tree_menu module

	exopy.utils.widgets.qt_tree_widget module

	exopy.utils.widgets.tree_nodes module

exopy.utils.widgets.dict_editor module

Template to edit a dictionary content.

This is a simplified version of a list editor automatically handling the adding
removing of keys and syncing by re-assigning the dict to the underlying model.
This is fit only for editing dict holding standard python types.

	
class exopy.utils.widgets.dict_editor.FieldFieldCompleterEditor(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Possible content for the Dictionary Editor containing a pair of
key-value Fields (String-like fields) where the second one has the
line-completer.

It expects the model to declare either the entries or entries_updater
function and to declare an evaluator_tooltip.

	
model

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.utils.widgets.dict_editor.FieldFieldEditor(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Possible content for the Dictionary Editor containing a pair of
key-value Fields (String-like fields).

	
model

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.utils.widgets.dict_editor.Pair(**kwargs)

	Bases: atom.atom.Atom

Base model to represent a key/value pair of a dictionary.

	
key

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
refresh_method

	A value which is callable.

	
value

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

exopy.utils.widgets.dict_tree_view module

Widget used to represent nested dict as a tree.

	
class exopy.utils.widgets.dict_tree_view.DictTreeView(parent=None, **kwargs)

	Bases: exopy.utils.widgets.qt_tree_widget.QtTreeWidget

Widget used to represent a nested dict as a tree.

	
mapping

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.utils.widgets.dict_tree_view.Leaf

	Bases: atom.atom.Atom

Class representing a non-mapping value associated with a name.

	
name

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
value

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
class exopy.utils.widgets.dict_tree_view.Node

	Bases: atom.atom.Atom

Class representing a mapping value.

	
name

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
nodes

	A member which allows list values.

Assigning to a list creates a copy. The orginal list will remain
unmodified. This is similar to the semantics of the assignment
operator on the C++ STL container classes.

	
parent

	A Typed which delays resolving the type definition.

The first time the value is accessed or modified, the type will
be resolved and the forward typed will behave identically to a
normal typed.

exopy.utils.widgets.list_editor module

Template widget allowing to edit a list member from an Atom object.

The list should be composed of Atom object itself, and should be paired with
a Signal used to notify listeners about internal changes of the list. It is the
responsability of the model to signal internal changes to the list.

2015-2018-04-09 To work correctly this requires the latest master of enaml (>0.9.8)

	
class exopy.utils.widgets.list_editor.ListContainer(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Custom container handling the layout for the list editor.

The user specifies which widget to use to edit the list and this container
takes care of correctly laying out the PushButton used to edit the list
content.

	
alignment

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
layout_constraints()

	Layout the push buttons used to edit the list content.

	
class exopy.utils.widgets.list_editor.PopupListMenu(parent=None, **kwargs)

	Bases: enaml.widgets.menu.Menu

Popup menu used to alter add, delete or move elements in the list.

	
index

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
model

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
operations

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.utils.widgets.qt_autoscroll_html module

Html widget automatically scrolling ot show latest added text.

	
class exopy.utils.widgets.qt_autoscroll_html.QtAutoscrollHtml(parent=None, **kwargs)

	Bases: enaml.widgets.raw_widget.RawWidget

Custom Html display which scrolls down to the last line on update.

Carriage returns are automatically converted to ‘
’ so that there
is no issue in the Html rendering.

	
text

	Text displayed by the widget. Any Html mark up will be rendered.

	
hug_width = 'ignore'

	

	
hug_height = 'ignore'

	

	
create_widget(parent)

	Finishes initializing the editor by creating the underlying toolkit
widget.

exopy.utils.widgets.qt_clipboard module

Implements a wrapper around the PyQt clipboard that handles Python objects
using pickle.

This has been ported from Enthought TraitsUI.

	
class exopy.utils.widgets.qt_clipboard.PyMimeData(data=None, pickle=False)

	Bases: PyQt5.QtCore.QMimeData

The PyMimeData wraps a Python instance as MIME data.

	Parameters

	
	data – Object to copy to the clipboard.

	pickle – Whether or not to pickle the data.

	
MIME_TYPE = 'application/exopy-qt4-instance'

	

	
NOPICKLE_MIME_TYPE = 'application/exopy-qt4-instance'

	

	
classmethod coerce(md)

	Wrap a QMimeData or a python object to a PyMimeData.

	
instance()

	Return the instance.

	
instance_type()

	Return the type of the instance.

	
local_paths()

	The list of local paths from url list, if any.

	
exopy.utils.widgets.qt_clipboard.CLIPBOARD = <exopy.utils.widgets.qt_clipboard._Clipboard object>

	The singleton clipboard instance.

exopy.utils.widgets.qt_completers module

Widgets with support for text completion.

	
class exopy.utils.widgets.qt_completers.QDelimitedCompleter(parent, delimiters, entries, entries_updater)

	Bases: PyQt5.QtWidgets.QCompleter

A custom completer to use with QtLineCompleter, QtTextEdit.

This completer only propose completion between specified characters.

	Parameters

	
	parent (QLineEdit or QTextEdit) – Widget for which to provide a completion.

	delimiters (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple of length 2 specifying the characters marking the begining end
of completion.

	entries (iterable) – Iterable of values used to propose completion.

	entries_updaters (callable) – Callable used to refresh the list of entries called once for the first
completion after the widget gained focus.

	
completionNeeded

	

	
text_changed(text=None)

	Callback handling the text being edited on the parent.

	
complete_text(completion)

	When the user validate a completion add it to the text.

	
on_focus_gained()

	Mark the entries for refreshing when the widget loses focus.

	
class exopy.utils.widgets.qt_completers.QtLineCompleter(parent=None, **kwargs)

	Bases: enaml.widgets.raw_widget.RawWidget

Simple line editor supporting completion.

	
text

	Text being edited by this widget.

	
entries

	Static list of entries used to propose completion. This member value is
not updated by the entries_updater.

	
entries_updater

	Callable to use to refresh the completions.

	
delimiters

	Delimiters marking the begining and end of completed section.

	
hug_width = 'ignore'

	

	
features = <enum: Feature.FocusEvents [value=2]>

	

	
create_widget(parent)

	Finishes initializing by creating the underlying toolkit widget.

	
update_object()

	Handles the user entering input data in the edit control.

	
focus_gained()

	Notify the completer the focus was lost.

	
a

	

	
e

	

	
f

	

	
k

	

	
r

	

	
w

	

	
class exopy.utils.widgets.qt_completers.QCompletableTexEdit

	Bases: PyQt5.QtWidgets.QTextEdit

A QTextEdit letting the completer handles key presses when visible.

	
keyPressEvent(event)

	Overriden to let the completer handle some events when visible.

	
completer

	

	
class exopy.utils.widgets.qt_completers.QtTextCompleter(parent=None, **kwargs)

	Bases: enaml.widgets.raw_widget.RawWidget

Simple text editor supporting completion.

	
text

	Text being edited by this widget.

	
entries

	Static list of entries used to propose completion. This member value is
not updated by the entries_updater.

	
entries_updater

	Callable to use to refresh the completions.

	
delimiters

	Delimiters marking the begining and end of completed section.

	
hug_width = 'ignore'

	

	
features = <enum: Feature.FocusEvents [value=2]>

	

	
create_widget(parent)

	Finishes initializing by creating the underlying toolkit widget.

	
update_object()

	Handles the user entering input data in the edit control.

	
a

	

	
e

	

	
f

	

	
focus_gained()

	Notify the completer the focus was lost.

	
k

	

	
r

	

	
w

	

exopy.utils.widgets.qt_list_str_widget module

Basic list widget limited to selection.

	
class exopy.utils.widgets.qt_list_str_widget.QtListStrWidget(parent=None, **kwargs)

	Bases: enaml.widgets.raw_widget.RawWidget

A list widget for Enaml displaying objects as strings.

Objects that are not string should be convertible to str and hashable.

	
items

	The list of str being viewed

	
selected_item

	The list of the currently selected str

	
selected_items

	A member which allows list values.

Assigning to a list creates a copy. The orginal list will remain
unmodified. This is similar to the semantics of the assignment
operator on the C++ STL container classes.

	
multiselect

	Whether or not the user can select multiple lines

	
to_string

	Callable to use to build a unicode representation of the objects
(one at a time).

	
sort

	Whether or not to sort the items before inserting them.

	
hug_width

	A member where the value can be one in a sequence of items.

	
hug_height

	A member where the value can be one in a sequence of items.

	
initialize()

	Ensures that the selected members always have meaningful values.

	
refresh_items()

	Refresh the items displayed in the list.

This is useful after an inplace operation on the list which is not
notified.

	
clear_selection()

	Make no item be selected.

	
create_widget(parent)

	Create the QListView widget.

	
on_selection()

	The signal handler for the index changed signal.

	
a

	

	
e

	

	
f

	

	
k

	

	
r

	

	
w

	

exopy.utils.widgets.qt_tree_menu module

Standard menu for the tree widget.

The action context will be set by the tree widget to a dictionary with the
following keys:

	‘copyable’: bool, can the node be copied

	‘cutable’: bool, can the node be cut

	‘pasteable’: bool, can node be pasted here

	‘renamable’: bool, can the node be renamed

	‘deletable’: bool, can the node be deleted

	‘not_root’: bool, is the node the root node of the tree

	‘data’: tuple, (tree, TreeNode instance, object, id of the node)

	
class exopy.utils.widgets.qt_tree_menu.CopyAction(parent=None, **kwargs)

	Bases: enaml.widgets.action.Action

Copies the current tree node object to the paste buffer.

	
action_context

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.utils.widgets.qt_tree_menu.CutAction(parent=None, **kwargs)

	Bases: enaml.widgets.action.Action

Cuts the current tree node object into the paste buffer.

	
action_context

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.utils.widgets.qt_tree_menu.DeleteAction(parent=None, **kwargs)

	Bases: enaml.widgets.action.Action

Deletes the current node from the tree.

	
action_context

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.utils.widgets.qt_tree_menu.NewAction(parent=None, **kwargs)

	Bases: enaml.widgets.action.Action

Adds a new object to the current node.

	
factory

	Callable to use to generate a new object.

	Type

	callable

	
args

	Arguments to pass to the factory function.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
kwargs

	Keyword arguments to pass to the factory function.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mode

	How to insert the new child into the hierarchy.

	Type

	{‘Append’, ‘Add before’, ‘Add after’}

	
action_context

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
args

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
factory

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
kwargs

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
mode

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.utils.widgets.qt_tree_menu.PasteAction(parent=None, **kwargs)

	Bases: enaml.widgets.action.Action

Pastes the current contents of the paste buffer into the current node.

	
action_context

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.utils.widgets.qt_tree_menu.RenameAction(parent=None, **kwargs)

	Bases: enaml.widgets.action.Action

Rename the current node.

	
action_context

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.utils.widgets.qt_tree_widget module

Tree widget for enaml.

This tree widget has limited functionality, it supports only :
- single selection
- single column tree
- no undo capabilities
- single TreeNode fitting an object.

It should be used with the TreeNode declarative class and the Menu item given
in qt_tree_menu.enaml.

This is vastly inspired from TraitsUI implementation.

	
exopy.utils.widgets.qt_tree_widget.pixmap_cache(name, path=None)

	Return the QPixmap corresponding to a filename. If the filename does
not contain a path component, ‘path’ is used (or if ‘path’ is not
specified, the local ‘images’ directory is used).

	
exopy.utils.widgets.qt_tree_widget.INDEX_GUARD = 1

	Cyclic notification guard flags

	
exopy.utils.widgets.qt_tree_widget.STD_ICON_MAP = {'<group>': 22, '<item>': 25, '<open>': 21}

	Standard icons map.

	
class exopy.utils.widgets.qt_tree_widget.QtTreeWidget(parent=None, **kwargs)

	Bases: enaml.widgets.raw_widget.RawWidget

Simple style of tree editor.

	
root_node

	Root object of the tree.

	
scrollable

	Is the tree editor is scrollable? This value overrides the default.

	
selected_item

	The currently selected object

	
hide_root

	Flag to hide the root node of the tree.

	
auto_expand

	Flag controlling the automatic expansion of nodes.

	
drag_drop

	Is drag and drop allowed on the tree.

	
show_icons

	Whether or not to show the icons for the leaves and nodes.

	
nodes

	Nodes declared by the user as children of this widget.

	
hug_height = 'ignore'

	

	
create_widget(parent)

	Finishes initializing the editor by creating the underlying toolkit
widget.

	
destroy()

	Disposes of the contents of an editor.

	
get_object(nid)

	Gets the object associated with a specified node.

	
get_parent(obj, name='')

	Returns the object that is the immmediate parent of a specified
object in the tree.

	
get_node(obj, name='')

	Returns the node associated with a specified object.

	
a

	

	
e

	

	
f

	

	
k

	

	
r

	

	
w

	

exopy.utils.widgets.tree_nodes module

Declarative node for tree node generation.

	
class exopy.utils.widgets.tree_nodes.TreeNode(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Represents a tree node.

This declaration is used to help the system determine how to extract
informations from the underlying object to populate the node.

Note that a Menu can be contributed as a child and will be used when
right clicking a node. It will be passed a ‘context’ describing the node
being right-clicked.

The context will be a dictionary with the following keys :
- ‘copyable’: bool, can the node be copied
- ‘cutable’: bool, can the node be cut
- ‘pasteable’: bool, can node be pasted here
- ‘renamable’: bool, can the node be renamed
- ‘deletable’: bool, can the node be deleted
- ‘not_root’: bool, is the node the root node of the tree
- ‘data’: tuple, (tree, TreeNode instance, object, id of the node)

	
node_for

	List of object classes and/or interfaces that the node applies to

	
label

	Either the name of a member containing a label, or a constant label, if
the string starts with ‘=’.

	
tooltip

	Either the name of a member containing a tooltip, or constant tooltip,
if the string starts with ‘=’.

	
children_member

	Name of the member containing children (if ‘’, the node is a leaf).

	
children_changed

	Name of the signal use to notify changes to the children. The payload of
the signal should be a ContainerChange instance.

	
add

	List of object classes than can be added or copied

	
move

	List of object classes that can be moved

	
name

	Name to use for a new instance

	
rename

	Can the object’s children be renamed?

	
rename_me

	Can the object be renamed?

	
copy

	Can the object’s children be copied?

	
delete

	Can the object’s children be deleted?

	
delete_me

	Can the object be deleted (if its parent allows it)?

	
insert

	Can children be inserted (vs. appended)?

	
auto_open

	Should tree nodes be automatically opened (expanded)?

	
auto_close

	Automatically close sibling tree nodes?

	
node_for_class

	Tuple of object classes that the node applies to

	
icon_item

	Name of leaf item icon

	
icon_group

	Name of group item icon

	
icon_open

	Name of opened group item icon

	
icon_path

	Resource path used to locate the node icon

	
background

	Selector or name for background color

	
foreground

	Selector or name for foreground color

	
insert_child(obj, index, child)

	Inserts a child into the object’s children.

	
confirm_delete(obj)

	Checks whether a specified object can be deleted.

	Returns

	
	- **True* if the object should be deleted with no further prompting.*

	- **False* if the object should not be deleted.*

	- Anything else (Caller should take its default action (which might) – include prompting the user to confirm deletion).

	
delete_child(obj, index)

	Deletes a child at a specified index from the object’s children.

	
move_child(obj, old, new)

	Move a child of the object’s children.

	
enter_rename(obj)

	Start renaming an object.

This method can be customized in case the renaming operation should not
occur directly on the label.

	Parameters

	obj – Refrence to the object the tree node being renamed is representing.

	Returns

	name – String on which to perform the renaming.

	Return type

	unicode

	
exit_rename(obj, label)

	Sets the label for a specified object after a renaming operation.

	
get_label(obj)

	Gets the label to display for a specified object.

	
initialize()

	Collect the Menu provided as a child.

	
allows_children(obj)

	Returns whether this object can have children.

	
has_children(obj)

	Returns whether the object has children.

	
get_children(obj)

	Gets the object’s children.

	
get_children_id(obj)

	Gets the object’s children identifier.

	
append_child(obj, child)

	Appends a child to the object’s children.

	
get_tooltip(obj)

	Gets the tooltip to display for a specified object.

	
get_icon(obj, is_expanded)

	Returns the icon for a specified object.

	
get_icon_path(obj)

	Returns the path used to locate an object’s icon.

	
get_name(obj)

	Returns the name to use when adding a new object instance
(displayed in the “New” submenu).

	
get_menu(context)

	Returns the right-click context menu for an object.

	
get_background(obj)

	Returns the background color for the item.

	
get_foreground(obj)

	Returns the foreground color for the item.

	
can_rename(obj)

	Returns whether the object’s children can be renamed.

	
can_rename_me(obj)

	Returns whether the object can be renamed.

	
can_copy(obj)

	Returns whether the object’s children can be copied.

	
can_delete(obj)

	Returns whether the object’s children can be deleted.

	
can_delete_me(obj)

	Returns whether the object can be deleted.

	
can_insert(obj)

	Returns whether the object’s children can be inserted (vs.
appended).

	
can_auto_open(obj)

	Returns whether the object’s children should be automatically
opened.

	
can_auto_close(obj)

	Returns whether the object’s children should be automatically
closed.

	
is_node_for(obj)

	Returns whether this is the node that handles a specified object.

	
can_add(obj, add_object)

	Returns whether a given object is droppable on the node.

	
get_add(obj)

	Returns the list of classes that can be added to the object.

	
get_drag_object(obj)

	Returns a draggable version of a specified object.

	
drop_object(obj, dropped_object)

	Returns a droppable version of a specified object.

	
select(obj)

	Handles an object being selected.

	
is_addable(klass)

	Returns whether a specified object class can be added to the node.

	
when_label_changed(obj, listener, remove)

	Sets up or removes a listener for the label being changed on a
specified object.

exopy.utils.atom_util module

Utility function to work with Atom tagged members and to automatize
preferences handling.

	
exopy.utils.atom_util.tagged_members(obj, meta=None, meta_value=None)

	Utility function to retrieve tagged members from an object

	Parameters

	
	obj (Atom) – Object from which the tagged members should be retrieved.

	meta (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The tag to look for, only member which has this tag will be returned

	meta_value (optional) – The value of the metadata used for filtering the members returned

	Returns

	tagged_members – Dictionary of the members whose metadatas corresponds to the predicate

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], Member)

	
exopy.utils.atom_util.member_from_pref(obj, member, val)

	Retrieve the value stored in the preferences for a member.

	Parameters

	
	obj (Atom) – Object who owns the member.

	member (Member) – Member for which the preferences should be retrieved.

	val (Value) – Value that is stored in the preferences, depending on the case this
might be a serialized value or simply a string.

	Returns

	value – The deserialized value that can be assigned to the member.

	Return type

	Value

	
exopy.utils.atom_util.member_to_pref(obj, member, val)

	Provide the value that will be stored in the preferences for a member.

	Parameters

	
	obj (Atom) – Object who owns the member.

	member (Member) – Member for which the preferences should be retrieved

	val (Value) – Value of the member to be stored in the preferences

	Returns

	pref_value – The serialized value/string that will be stored in the pref.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exopy.utils.atom_util.ordered_dict_to_pref(obj, member, val)

	
	Function to convert an OrderedDict to something that can
	be easily stored and read back, in this case a list of tuples.

	Parameters

	
	obj (Atom) – The instance calling the function

	member (Member) – The member that must be stored

	val (OrderedDict) – The current value of the member

	Returns

	value – the serialized value

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exopy.utils.atom_util.ordered_dict_from_pref(obj, member, val)

	Read back the list of tuples saved by ‘ordered_dict_to_pref’.

We simply do a literal_eval of the list of tuples, and then convert it to
an OrderedDict.

	Parameters

	
	obj (Atom) – The instance calling the function

	member (Member) – The member that must be stored

	val (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string representation of the stored value

	Returns

	value – An Ordered Dict that can be assigned to the member.

	Return type

	OrderedDict

	
class exopy.utils.atom_util.HasPrefAtom

	Bases: atom.atom.Atom

Base class for Atom object using preferences.

This class defines the basic functions used to build a string dict from
the member value and to update the members from such a dict.

	
preferences_from_members()

	Get the members values as string to store them in .ini files.

	
update_members_from_preferences(parameters)

	Use the string values given in the parameters to update the members

This function will call itself on any tagged HasPrefAtom member.

	
exopy.utils.atom_util.preferences_from_members(self)

	Get the members values as string to store them in .ini files.

	
exopy.utils.atom_util.update_members_from_preferences(self, parameters)

	Use the string values given in the parameters to update the members

This function will call itself on any tagged HasPrefAtom member.

exopy.utils.configobj_ops module

Utility function to work with ConfigObj objects.

	
exopy.utils.configobj_ops.include_configobj(new_parent, config)

	Make a ConfigObj part of another one and preserves the depth.

This function will copy all entries from config.

	Parameters

	
	new_parent (configobj.Section) – Section in which information should be added.

	config (configobj.Section) – Section to merge into the new_parent.

	
exopy.utils.configobj_ops.traverse_config(config, depth=- 1)

	Traverse a ConfigObj object by yielding all sections.

	Parameters

	depth (int [https://docs.python.org/3/library/functions.html#int]) – How deep should we explore the tree of tasks. When this number
reaches zero deeper children should not be explored but simply
yielded.

exopy.utils.container_change module

Payload to use when notifying the system about a container change.

	
class exopy.utils.container_change.ContainerChange

	Bases: atom.atom.Atom

Payload to use when notifying the system about a container change.

	
obj

	Reference to object from which this event originate.

	
name

	Name of the modified container.

	
added

	List of added entries. Should not be manipulated directly by user code.
Use the add_operation method to add operations.

	
moved

	List of moved entries with their old and new positions. Should not be
manipulated directly by user code. Use the add_operation method to add
operations.

	
removed

	List of removed entries. Should not be manipulated directly by user
code. Use the add_operation method to add operations.

	
collapsed

	List of ContainerChange representing an ordered sequence of change.

	
add_operation(typ, op_desc)

	Add an operation.

If two operations of different types they are represented by two
ContainerChange added in the collapsed list. Using this method ensure
that only one list is non empty. Consumer should always check the
collapsed list first.

	Parameters

	
	typ ({'added', 'moved', removed'}) – The type of operation to add to the change set.

	op_desc (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple describing the operation it should be of the form:

	’added’ : (index, obj)

	’moved’ : (old_index, new_index, obj)

	’removed’ : (index, obj)

exopy.utils.declarator module

Base class for extension declaration relying on a visitor pattern.

	
class exopy.utils.declarator.Declarator(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Base class for extension object which uses a visitor pattern.

	
is_registered

	Flag indicating whether the declarator has been successfully registered

	
get_path()

	Query from parent the path to use for this declarator.

	Returns

	path – Path declared by the parent. This can be None if no path is
declared.

	Return type

	unicode or None [https://docs.python.org/3/library/constants.html#None]

	
get_group()

	Get the group defined by the closest parent.

	
register(collector, traceback)

	Add the contribution of this extension to the plugin.

	Parameters

	
	collector (DeclaratorCollector) – Collector in charge handling the registering of declarators.
Contributions should be added to the contributions member (Dict).
If a declarator cannot be registered because another one need to be
registered first it should add itself to the _delayed member (List)

	traceback (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary in which any issue occuring during registration should
be recorded.

	
unregister(plugin)

	Remove the contribution of this extension to the plugin.

	Parameters

	collector (DeclaratorCollector) – Collector in charge handling the registering of declarators.

	
class exopy.utils.declarator.GroupDeclarator(parent=None, **kwargs)

	Bases: exopy.utils.declarator.Declarator

Declarator used to group an ensemble of declarator.

	
path

	Prefix path to use for all children Declarator. Path should be dot
separated.

	
group

	Id of the group common to all children Declarator. It is the
responsability of the children to mention they are part of a group.

	
get_path()

	Overriden method to walk all parents.

	
register(plugin, traceback)

	Register all children Declarator.

	
unregister(plugin)

	Unregister all children Declarator.

	
exopy.utils.declarator.import_and_get(path, name, traceback, id)

	Function importing a module and retrieving an object from it.

This function provides a common pattern for declarator.

exopy.utils.enaml_destroy_hook module

Mixin class to provide declarative finalization customisations capabilities.

	
exopy.utils.enaml_destroy_hook.add_destroy_hook(cls)

	Add a declarative event signaling that an object will be destroyed.

exopy.utils.flags module

Thread safe bit flag with convenient interface.

	
class exopy.utils.flags.BitFlag

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Bit flag conveniency class providing thread safety facilities.

	Parameters

	flags (iterable[unicode]) – Name of the flags that this flag understand.

	
set(*flags)

	Set specified flags.

If a flag is already set this is a no-op. If a thread is waiting on a
flag, it gets notified.

	
clear(*flags)

	Clear the specified flags.

If a flag is already cleared this is a no-op.

	
test(*flags)

	Test is all specified flags are set.

	
wait(timeout, *flags)

	Wait till some flags are set.

	Parameters

	
	timeout (float|None) – Maximum time to wait. If None waits forever.

	flags (iterable[unicode]) – Flags upon which to wait.

	Returns

	result – False if the method returned because of the timeout.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
flags

	

exopy.utils.mapping_utils module

Mapping related utility functions.

	
exopy.utils.mapping_utils.recursive_update(to_update, data)

	Update a dictionary and all the mapping found as values.

	Parameters

	
	to_update (Mapping) – Mapping whose content should be updated.

	data (Mapping) – Mapping to use from which to pull new values.

exopy.utils.plugin_tools module

Useful tools to avoid code duplication when writing plugins.

	
class exopy.utils.plugin_tools.HasPreferencesPlugin

	Bases: enaml.workbench.plugin.Plugin

Base class for plugin using preferences.

Simply defines the most basic preferences system inherited from
HasPrefAtom. Preferences are automatically queried and saved using the
exopy.app.preferences plugin.

	
update_members_from_preferences(parameters)

	Use the string values given in the parameters to update the members

This function will call itself on any tagged HasPrefAtom member.

	
preferences_from_members()

	Get the members values as string to store them in .ini files.

	
start()

	Upon starting initialize members using preferences.

	
exopy.utils.plugin_tools.make_handler(id, method_name)

	Generate a generic handler calling a plugin method.

	
exopy.utils.plugin_tools.make_extension_validator(base_cls, fn_names=(), attributes='description')

	Create an extension validation function checking that key methods were
overridden and attributes values provided.

	Parameters

	
	base_cls (type [https://docs.python.org/3/library/functions.html#type]) – Base class from which the contribution should inherit.

	fn_names (iterable[unicode], optional) – Names of the function the extensions must override.

	attributes (iterable[unicode], optional) – Names of the attributes the extension should provide values for.

	Returns

	validator – Function that can be used to validate an extension contribution.

	Return type

	callable

	
class exopy.utils.plugin_tools.ClassTuple

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Special tuple meant to hold classes.

Provides an smart constructor and a nice str representation.

	
class exopy.utils.plugin_tools.BaseCollector

	Bases: atom.atom.Atom

Base class for automating extension collection.

	
workbench

	Reference to the application workbench.

	
point

	Id of the extension point to observe.

	
ext_class

	Expected class(es) of the object generated by the extension.

	
contributions

	Dictionary storing the consributiosn of the observed extension point.
This should not be altered by user code. This is never modified in place
so user code will get reliable notifications when observing it.

	
start()

	Run first collections of contributions and set up observers.

This method should be called in the start method of the plugin using
this object.

	
stop()

	Unbind observers and clean up ressources.

This method should be called in the stop method of the plugin using
this object.

	
class exopy.utils.plugin_tools.ExtensionsCollector

	Bases: exopy.utils.plugin_tools.BaseCollector

Convenience class collecting an extension point contribution.

This class can be used on any extension point to which extensions
contribute instances of a specific class. Those object should always have
an id member.

	
validate_ext

	Callable to use to ensure that the provide extension does fit.
Should take the proposed contribution as single argument and return a
bool indicating the result of the test, and a message explaining what
went wrong (or an empty string if test passed).

	
contributed_by(contrib_id)

	Find the extension declaring a contribution.

	
class exopy.utils.plugin_tools.DeclaratorsCollector

	Bases: exopy.utils.plugin_tools.BaseCollector

Class registering Declarator contributed to an extension point.

This class can be used on any extension point to which extensions
contribute Declarator.

exopy.utils.priority_heap module

Priority heap based on list and heapq module.

	
class exopy.utils.priority_heap.PriorityHeap

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A priority heap implementation based on a heapq.

	
push(priority, obj)

	Push a task with a given priority on the queue.

	Parameters

	
	priority (int [https://docs.python.org/3/library/functions.html#int]) – Priority associated with the object to push.

	obj – Object to push on the heap.

	
pop()

	Pop a task from the queue.

	
remove(obj)

	Mark a task as being outdated.

This is the only way to remove an object from a heap without messing
with the sorting.

exopy.utils.transformers module

Utility functions to perform string transformations.

	
exopy.utils.transformers.basic_name_formatter(name)

	Basic formmater turning ‘_’ in ‘ ‘ and capitalising.

	
exopy.utils.transformers.ids_to_unique_names(ids, name_formatter=<function basic_name_formatter>, separator='.', preformatter=None, reverse=False)

	Make the easiest to read names from ids without duplicate.

	Parameters

	
	ids (iterable[unicode]) – Iterable of ids from which to build the names.

	name_formatter (callable, optional) – Callable making a name more human readdable. It is applied only to
the last part of the id (after last separator occurence).

	separator (unicode, optional) – Character used as separator between the different parts of an id.

	preformatter (callable, optional) – Preformat ids before looking for shorter names.

	reverse (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False the mapping returned map the names to the ids, otherwise it
maps the ids to the names.

	Returns

	names – Dictionary mapping the unique names to their original ids.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

exopy.utils.watchdog module

Collections of useful watchdog file system observers.

	
class exopy.utils.watchdog.SystematicFileUpdater(handler)

	Bases: watchdog.events.FileSystemEventHandler

Simple watchdog handler calling always the same function no matter the
event

	
on_created(event)

	Called on creation of a file.

	
on_deleted(event)

	Called on deletion of a file.

	
on_moved(event)

	Called on displacement of a file.

exopy.version module

The version information for this release of Exopy.

	
exopy.version.version_info = version_info(major=0, minor=1, micro=0, status='')

	A namedtuple of the version info for the current release.

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 exopy	

 	
 	
 exopy.app.app_extensions	

 	
 	
 exopy.app.app_manifest	

 	
 	
 exopy.app.app_plugin	

 	
 	
 exopy.app.dependencies.dependencies	

 	
 	
 exopy.app.dependencies.manifest	

 	
 	
 exopy.app.dependencies.plugin	

 	
 	
 exopy.app.errors.errors	

 	
 	
 exopy.app.errors.manifest	

 	
 	
 exopy.app.errors.plugin	

 	
 	
 exopy.app.errors.widgets	

 	
 	
 exopy.app.log.manifest	

 	
 	
 exopy.app.log.plugin	

 	
 	
 exopy.app.log.tools	

 	
 	
 exopy.app.packages.manifest	

 	
 	
 exopy.app.packages.plugin	

 	
 	
 exopy.app.preferences.manifest	

 	
 	
 exopy.app.preferences.plugin	

 	
 	
 exopy.app.preferences.preferences	

 	
 	
 exopy.app.states.manifest	

 	
 	
 exopy.app.states.plugin	

 	
 	
 exopy.app.states.state	

 	
 	
 exopy.instruments.connections.base_connection	

 	
 	
 exopy.instruments.connections.visa_connections	

 	
 	
 exopy.instruments.drivers.driver_decl	

 	
 	
 exopy.instruments.infos	

 	
 	
 exopy.instruments.manifest	

 	
 	
 exopy.instruments.manufacturer_aliases	

 	
 	
 exopy.instruments.plugin	

 	
 	
 exopy.instruments.settings.base_settings	

 	
 	
 exopy.instruments.starters.base_starter	

 	
 	
 exopy.instruments.starters.exceptions	

 	
 	
 exopy.instruments.user	

 	
 	
 exopy.instruments.widgets.browsing	

 	
 	
 exopy.instruments.widgets.instrument_selection	

 	
 	
 exopy.instruments.widgets.profile_edition	

 	
 	
 exopy.instruments.widgets.profile_selection	

 	
 	
 exopy.measurement.base_tool	

 	
 	
 exopy.measurement.container	

 	
 	
 exopy.measurement.editors.base_editor	

 	
 	
 exopy.measurement.editors.database_access_editor.editor	

 	
 	
 exopy.measurement.editors.database_access_editor.editor_model	

 	
 	
 exopy.measurement.editors.execution_editor.editor	

 	
 	
 exopy.measurement.editors.execution_editor.editor_model	

 	
 	
 exopy.measurement.editors.standard_editor	

 	
 	
 exopy.measurement.engines.base_engine	

 	
 	
 exopy.measurement.engines.process_engine.engine	

 	
 	
 exopy.measurement.engines.process_engine.engine_declaration	

 	
 	
 exopy.measurement.engines.process_engine.subprocess	

 	
 	
 exopy.measurement.engines.selection	

 	
 	
 exopy.measurement.engines.utils	

 	
 	
 exopy.measurement.hooks.base_hooks	

 	
 	
 exopy.measurement.hooks.internal_checks	

 	
 	
 exopy.measurement.manifest	

 	
 	
 exopy.measurement.measurement	

 	
 	
 exopy.measurement.monitors.base_monitor	

 	
 	
 exopy.measurement.monitors.text_monitor.custom_entry_edition	

 	
 	
 exopy.measurement.monitors.text_monitor.entry	

 	
 	
 exopy.measurement.monitors.text_monitor.manifest	

 	
 	
 exopy.measurement.monitors.text_monitor.monitor	

 	
 	
 exopy.measurement.monitors.text_monitor.monitor_views	

 	
 	
 exopy.measurement.monitors.text_monitor.plugin	

 	
 	
 exopy.measurement.monitors.text_monitor.rules.base	

 	
 	
 exopy.measurement.monitors.text_monitor.rules.base_views	

 	
 	
 exopy.measurement.monitors.text_monitor.rules.edition_views	

 	
 	
 exopy.measurement.monitors.text_monitor.rules.infos	

 	
 	
 exopy.measurement.monitors.text_monitor.rules.std_rules	

 	
 	
 exopy.measurement.monitors.text_monitor.rules.std_views	

 	
 	
 exopy.measurement.plugin	

 	
 	
 exopy.measurement.processor	

 	
 	
 exopy.measurement.workspace.checks_display	

 	
 	
 exopy.measurement.workspace.content	

 	
 	
 exopy.measurement.workspace.manifest	

 	
 	
 exopy.measurement.workspace.measurement_edition	

 	
 	
 exopy.measurement.workspace.measurement_execution	

 	
 	
 exopy.measurement.workspace.measurement_tracking	

 	
 	
 exopy.measurement.workspace.monitors_window	

 	
 	
 exopy.measurement.workspace.tools_edition	

 	
 	
 exopy.measurement.workspace.workspace	

 	
 	
 exopy.tasks.configs.base_config_views	

 	
 	
 exopy.tasks.configs.base_configs	

 	
 	
 exopy.tasks.configs.loop_config	

 	
 	
 exopy.tasks.configs.loop_config_view	

 	
 	
 exopy.tasks.declarations	

 	
 	
 exopy.tasks.filters	

 	
 	
 exopy.tasks.infos	

 	
 	
 exopy.tasks.manifest	

 	
 	
 exopy.tasks.plugin	

 	
 	
 exopy.tasks.tasks.base_tasks	

 	
 	
 exopy.tasks.tasks.base_views	

 	
 	
 exopy.tasks.tasks.database	

 	
 	
 exopy.tasks.tasks.decorators	

 	
 	
 exopy.tasks.tasks.instr_task	

 	
 	
 exopy.tasks.tasks.instr_view	

 	
 	
 exopy.tasks.tasks.logic.conditional_task	

 	
 	
 exopy.tasks.tasks.logic.declarations	

 	
 	
 exopy.tasks.tasks.logic.loop_exceptions	

 	
 	
 exopy.tasks.tasks.logic.loop_exceptions_tasks	

 	
 	
 exopy.tasks.tasks.logic.loop_iterable_interface	

 	
 	
 exopy.tasks.tasks.logic.loop_linspace_interface	

 	
 	
 exopy.tasks.tasks.logic.loop_task	

 	
 	
 exopy.tasks.tasks.logic.views.conditional_view	

 	
 	
 exopy.tasks.tasks.logic.views.loop_exceptions_views	

 	
 	
 exopy.tasks.tasks.logic.views.loop_iterable_view	

 	
 	
 exopy.tasks.tasks.logic.views.loop_linspace_view	

 	
 	
 exopy.tasks.tasks.logic.views.loop_view	

 	
 	
 exopy.tasks.tasks.logic.views.while_view	

 	
 	
 exopy.tasks.tasks.logic.while_task	

 	
 	
 exopy.tasks.tasks.shared_resources	

 	
 	
 exopy.tasks.tasks.string_evaluation	

 	
 	
 exopy.tasks.tasks.task_editor	

 	
 	
 exopy.tasks.tasks.task_interface	

 	
 	
 exopy.tasks.tasks.util.declarations	

 	
 	
 exopy.tasks.tasks.util.definition_task	

 	
 	
 exopy.tasks.tasks.util.formula_task	

 	
 	
 exopy.tasks.tasks.util.log_task	

 	
 	
 exopy.tasks.tasks.util.sleep_task	

 	
 	
 exopy.tasks.tasks.util.views.definition_view	

 	
 	
 exopy.tasks.tasks.util.views.formula_view	

 	
 	
 exopy.tasks.tasks.util.views.log_view	

 	
 	
 exopy.tasks.tasks.util.views.sleep_view	

 	
 	
 exopy.tasks.tasks.validators	

 	
 	
 exopy.tasks.utils.building	

 	
 	
 exopy.tasks.utils.saving	

 	
 	
 exopy.tasks.utils.templates	

 	
 	
 exopy.tasks.widgets.browsing	

 	
 	
 exopy.tasks.widgets.building	

 	
 	
 exopy.tasks.widgets.saving	

 	
 	
 exopy.testing.fixtures	

 	
 	
 exopy.testing.instruments.fixtures	

 	
 	
 exopy.testing.measurement.contributions	

 	
 	
 exopy.testing.measurement.dummies	

 	
 	
 exopy.testing.measurement.fixtures	

 	
 	
 exopy.testing.measurement.monitors.text_monitor.fixtures	

 	
 	
 exopy.testing.measurement.workspace.fixtures	

 	
 	
 exopy.testing.tasks.fixtures	

 	
 	
 exopy.testing.tasks.util	

 	
 	
 exopy.testing.util	

 	
 	
 exopy.testing.windows	

 	
 	
 exopy.utils.atom_util	

 	
 	
 exopy.utils.configobj_ops	

 	
 	
 exopy.utils.container_change	

 	
 	
 exopy.utils.declarator	

 	
 	
 exopy.utils.enaml_destroy_hook	

 	
 	
 exopy.utils.flags	

 	
 	
 exopy.utils.mapping_utils	

 	
 	
 exopy.utils.plugin_tools	

 	
 	
 exopy.utils.priority_heap	

 	
 	
 exopy.utils.transformers	

 	
 	
 exopy.utils.watchdog	

 	
 	
 exopy.utils.widgets.dict_editor	

 	
 	
 exopy.utils.widgets.dict_tree_view	

 	
 	
 exopy.utils.widgets.list_editor	

 	
 	
 exopy.utils.widgets.qt_autoscroll_html	

 	
 	
 exopy.utils.widgets.qt_clipboard	

 	
 	
 exopy.utils.widgets.qt_completers	

 	
 	
 exopy.utils.widgets.qt_list_str_widget	

 	
 	
 exopy.utils.widgets.qt_tree_menu	

 	
 	
 exopy.utils.widgets.qt_tree_widget	

 	
 	
 exopy.utils.widgets.tree_nodes	

 	
 	
 exopy.version	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	a (exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	(exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	(exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	abstract_config_task() (in module exopy.tasks.widgets.building)

 	accept_pause (exopy.testing.measurement.dummies.DummyEngine attribute)

 	(exopy.testing.measurement.dummies.DummyHook attribute)

 	(exopy.testing.measurement.dummies.DummyPostHook attribute)

 	(exopy.testing.measurement.dummies.DummyPreHook attribute)

 	accept_template_info() (exopy.tasks.widgets.saving.TemplateSaverModel method)

 	access_exs (exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	access_notifier (exopy.tasks.tasks.database.TaskDatabase attribute)

 	action_context (exopy.measurement.workspace.measurement_edition.SaveAction attribute)

 	(exopy.measurement.workspace.measurement_edition.TaskCopyAction attribute)

 	(exopy.utils.widgets.qt_tree_menu.CopyAction attribute)

 	(exopy.utils.widgets.qt_tree_menu.CutAction attribute)

 	(exopy.utils.widgets.qt_tree_menu.DeleteAction attribute)

 	(exopy.utils.widgets.qt_tree_menu.NewAction attribute)

 	(exopy.utils.widgets.qt_tree_menu.PasteAction attribute)

 	(exopy.utils.widgets.qt_tree_menu.RenameAction attribute)

 	active (exopy.measurement.processor.MeasurementProcessor attribute)

 	active_threads_counter (exopy.tasks.tasks.base_tasks.RootTask attribute)

 	add (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	add() (exopy.measurement.container.MeasurementContainer method)

 	add_access_exception() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	(exopy.tasks.tasks.database.TaskDatabase method)

 	add_child_task() (exopy.tasks.tasks.base_tasks.ComplexTask method)

 	add_destroy_hook() (in module exopy.utils.enaml_destroy_hook)

 	add_entries() (exopy.measurement.monitors.text_monitor.monitor.TextMonitor method)

 	add_exception() (exopy.measurement.editors.database_access_editor.editor_model.NodeModel method)

 	add_filter() (exopy.app.log.plugin.LogPlugin method)

 	add_handler() (exopy.app.log.plugin.LogPlugin method)

 	add_message() (exopy.app.log.tools.LogModel method)

 	add_node() (exopy.measurement.editors.database_access_editor.editor_model.NodeModel method)

 	add_operation() (exopy.utils.container_change.ContainerChange method)

 	
 	add_tool() (exopy.measurement.measurement.Measurement method)

 	added (exopy.utils.container_change.ContainerChange attribute)

 	address_format (exopy.instruments.connections.visa_connections.VisaUSB attribute)

 	aliases (exopy.instruments.infos.ManufacturerInfos attribute)

 	(exopy.instruments.manufacturer_aliases.ManufacturerAlias attribute)

 	alignment (exopy.utils.widgets.list_editor.ListContainer attribute)

 	alive_instances() (exopy.testing.util.ObjectTracker property)

 	allows_children() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	analyse() (exopy.app.dependencies.dependencies.BuildDependency method)

 	(exopy.app.dependencies.dependencies.RuntimeDependencyAnalyser method)

 	analyse_dependencies() (exopy.app.dependencies.plugin.DependenciesPlugin method)

 	app() (in module exopy.testing.fixtures)

 	app_dir() (in module exopy.testing.fixtures)

 	app_directory (exopy.app.preferences.plugin.PrefPlugin attribute)

 	app_plugin_factory() (in module exopy.app.app_manifest)

 	AppClosed (class in exopy.app.app_extensions)

 	AppClosing (class in exopy.app.app_extensions)

 	AppDirSelectionDialog (class in exopy.app.preferences.manifest)

 	append_child() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	application_factory() (in module exopy.app.app_manifest)

 	AppManifest (class in exopy.app.app_manifest)

 	AppPlugin (class in exopy.app.app_plugin)

 	AppStartup (class in exopy.app.app_extensions)

 	AppWindow (class in exopy.app.app_manifest)

 	architecture (exopy.instruments.drivers.driver_decl.Driver attribute)

 	(exopy.instruments.drivers.driver_decl.Drivers attribute)

 	area (exopy.testing.windows.DockItemTestingWindow attribute)

 	args (exopy.testing.util.CallSpy attribute)

 	(exopy.utils.widgets.qt_tree_menu.NewAction attribute), [1]

 	auto_close (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	auto_expand (exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	auto_open (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	auto_save (exopy.app.preferences.preferences.Preferences attribute)

 	auto_show_monitors (exopy.measurement.plugin.MeasurementPlugin attribute)

 	auto_task_names (exopy.tasks.plugin.TaskManagerPlugin attribute)

 	auto_task_path (exopy.tasks.plugin.TaskManagerPlugin attribute)

B

 	
 	background (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	BaseCollector (class in exopy.utils.plugin_tools)

 	BaseConfigView (class in exopy.tasks.configs.base_config_views)

 	BaseConnection (class in exopy.instruments.connections.base_connection)

 	BaseEditor (class in exopy.measurement.editors.base_editor)

 	BaseEngine (class in exopy.measurement.engines.base_engine)

 	BaseExecutionHook (class in exopy.measurement.hooks.base_hooks)

 	BaseInterface (class in exopy.tasks.tasks.task_interface)

 	BaseMeasureTool (class in exopy.measurement.base_tool)

 	BaseMonitor (class in exopy.measurement.monitors.base_monitor)

 	BaseMonitorItem (class in exopy.measurement.monitors.base_monitor)

 	BasePostExecutionHook (class in exopy.measurement.hooks.base_hooks)

 	BasePreExecutionHook (class in exopy.measurement.hooks.base_hooks)

 	BaseRule (class in exopy.measurement.monitors.text_monitor.rules.base)

 	BaseRuleView (class in exopy.measurement.monitors.text_monitor.rules.base_views)

 	BaseSettings (class in exopy.instruments.settings.base_settings)

 	BaseStarter (class in exopy.instruments.starters.base_starter)

 	BaseTask (class in exopy.tasks.tasks.base_tasks)

 	BaseTaskConfig (class in exopy.tasks.configs.base_configs)

 	BaseTaskView (class in exopy.tasks.tasks.base_views)

 	BaseToolDeclaration (class in exopy.measurement.base_tool)

 	BaseVisaConnection (class in exopy.instruments.connections.visa_connections)

 	basic_name_formatter() (in module exopy.utils.transformers)

 	BasicErrorsDisplay (class in exopy.app.errors.widgets)

 	bind_observers() (exopy.measurement.editors.execution_editor.editor_model.ExecutionEditorModel method)

 	BitFlag (class in exopy.utils.flags)

 	BlueLabel (class in exopy.measurement.editors.database_access_editor.editor)

 	board (exopy.instruments.connections.visa_connections.VisaGPIB attribute)

 	(exopy.instruments.connections.visa_connections.VisaRS232 attribute)

 	(exopy.instruments.connections.visa_connections.VisaTCPIP attribute)

 	(exopy.instruments.connections.visa_connections.VisaUSB attribute)

 	
 	BreakException

 	BreakTask (class in exopy.tasks.tasks.logic.loop_exceptions_tasks)

 	BreakView (class in exopy.tasks.tasks.logic.views.loop_exceptions_views)

 	BrowsingDialog (class in exopy.instruments.widgets.browsing)

 	buff_size (exopy.app.log.tools.LogModel attribute)

 	build_deps (exopy.app.dependencies.plugin.DependenciesPlugin attribute)

 	(exopy.measurement.engines.base_engine.ExecutionInfos attribute)

 	BUILD_FAIL_ANALYSE (exopy.testing.measurement.contributions.Flags attribute)

 	BUILD_FAIL_COLLECT (exopy.testing.measurement.contributions.Flags attribute)

 	build_from_config() (exopy.tasks.tasks.base_tasks.BaseTask class method)

 	(exopy.tasks.tasks.base_tasks.ComplexTask class method)

 	(exopy.tasks.tasks.base_tasks.RootTask class method)

 	(exopy.tasks.tasks.base_tasks.SimpleTask class method)

 	(exopy.tasks.tasks.task_interface.BaseInterface class method)

 	(exopy.tasks.tasks.task_interface.InterfaceableMixin class method)

 	build_root() (in module exopy.tasks.utils.building)

 	build_rule() (exopy.measurement.monitors.text_monitor.plugin.TextMonitorPlugin method)

 	build_task() (exopy.tasks.configs.base_configs.BaseTaskConfig method)

 	(exopy.tasks.configs.base_configs.PyTaskConfig method)

 	(exopy.tasks.configs.base_configs.TemplateTaskConfig method)

 	(exopy.tasks.configs.loop_config.LoopTaskConfig method)

 	(in module exopy.measurement.workspace.measurement_edition)

 	build_task_from_config() (in module exopy.tasks.utils.building)

 	BuildContainer (class in exopy.app.dependencies.plugin)

 	BuildDependency (class in exopy.app.dependencies.dependencies)

 	builder (exopy.measurement.monitors.text_monitor.custom_entry_edition.EntryDialog attribute)

 	BuilderView (class in exopy.tasks.widgets.building)

C

 	
 	called (exopy.testing.util.CallSpy attribute)

 	CallSpy (class in exopy.testing.util)

 	can_add() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	can_auto_close() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	can_auto_open() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	can_copy() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	can_delete() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	can_delete_me() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	can_insert() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	can_rename() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	can_rename_me() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	changed (exopy.measurement.container.MeasurementContainer attribute)

 	check() (exopy.measurement.base_tool.BaseMeasureTool method)

 	(exopy.measurement.hooks.internal_checks.InternalChecksHook method)

 	(exopy.tasks.tasks.base_tasks.BaseTask method)

 	(exopy.tasks.tasks.base_tasks.ComplexTask method)

 	(exopy.tasks.tasks.base_tasks.RootTask method)

 	(exopy.tasks.tasks.instr_task.InstrumentTask method)

 	(exopy.tasks.tasks.logic.loop_exceptions_tasks.BreakTask method)

 	(exopy.tasks.tasks.logic.loop_exceptions_tasks.ContinueTask method)

 	(exopy.tasks.tasks.logic.loop_iterable_interface.IterableLoopInterface method)

 	(exopy.tasks.tasks.logic.loop_linspace_interface.LinspaceLoopInterface method)

 	(exopy.tasks.tasks.logic.loop_task.LoopTask method)

 	(exopy.tasks.tasks.task_interface.BaseInterface method)

 	(exopy.tasks.tasks.task_interface.InterfaceableMixin method)

 	(exopy.tasks.tasks.util.definition_task.DefinitionTask method)

 	(exopy.tasks.tasks.util.formula_task.FormulaTask method)

 	(exopy.tasks.tasks.util.sleep_task.SleepTask method)

 	(exopy.tasks.tasks.validators.Feval method)

 	(exopy.testing.measurement.dummies.DummyPostHook method)

 	(exopy.testing.measurement.dummies.DummyPreHook method)

 	(exopy.testing.tasks.util.CheckTask method)

 	check_app_folder() (in module exopy.app.preferences.manifest)

 	check_called (exopy.testing.tasks.util.CheckTask attribute)

 	check_children() (in module exopy.tasks.declarations)

 	check_infos() (exopy.instruments.starters.base_starter.BaseStarter method)

 	check_parameters() (exopy.tasks.configs.base_configs.BaseTaskConfig method)

 	(exopy.tasks.configs.loop_config.LoopTaskConfig method)

 	checks (exopy.measurement.engines.base_engine.ExecutionInfos attribute)

 	ChecksDisplay (class in exopy.measurement.workspace.checks_display)

 	CheckTask (class in exopy.testing.tasks.util)

 	children (exopy.measurement.editors.database_access_editor.editor_model.NodeModel attribute)

 	(exopy.tasks.tasks.base_tasks.ComplexTask attribute)

 	children_changed (exopy.tasks.tasks.base_tasks.ComplexTask attribute)

 	(exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	children_member (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	class_id (exopy.measurement.monitors.text_monitor.rules.base.BaseRule attribute)

 	ClassTuple (class in exopy.utils.plugin_tools)

 	clean() (exopy.app.app_extensions.AppClosed method)

 	(exopy.app.dependencies.plugin.BuildContainer method)

 	(exopy.app.dependencies.plugin.RuntimeContainer method)

 	clean_dict() (in module exopy.app.dependencies.plugin)

 	clean_name() (in module exopy.instruments.widgets.profile_edition)

 	clean_text() (exopy.app.log.tools.LogModel method)

 	clean_workspace (exopy.measurement.engines.process_engine.engine_declaration.ProcessEngine attribute)

 	clean_workspace() (exopy.measurement.engines.base_engine.Engine method)

 	clear() (exopy.utils.flags.BitFlag method)

 	clear_selection() (exopy.utils.widgets.qt_list_str_widget.QtListStrWidget method)

 	CLIPBOARD (in module exopy.utils.widgets.qt_clipboard)

 	clone() (exopy.instruments.infos.ProfileInfos method)

 	close() (exopy.measurement.engines.utils.MeasureSpy method)

 	close_all_windows() (in module exopy.testing.util)

 	closed (exopy.app.app_plugin.AppPlugin attribute)

 	closing (exopy.app.app_plugin.AppPlugin attribute)

 	cls (exopy.instruments.infos.DriverInfos attribute)

 	(exopy.measurement.monitors.text_monitor.rules.infos.RuleInfos attribute)

 	(exopy.tasks.infos.ConfigInfos attribute)

 	(exopy.tasks.infos.InterfaceInfos attribute)

 	(exopy.tasks.infos.TaskInfos attribute)

 	coerce() (exopy.utils.widgets.qt_clipboard.PyMimeData class method)

 	collapsed (exopy.utils.container_change.ContainerChange attribute)

 	collect() (exopy.app.dependencies.dependencies.BuildDependency method)

 	(exopy.app.dependencies.dependencies.RuntimeDependencyCollector method)

 	collect_and_register() (exopy.app.packages.plugin.PackagesPlugin method)

 	collect_dependencies() (exopy.app.dependencies.plugin.DependenciesPlugin method)

 	
 	collect_monitored_entries() (exopy.measurement.measurement.Measurement method)

 	collect_runtimes() (exopy.measurement.measurement.MeasurementDependencies method)

 	collector_id (exopy.app.dependencies.dependencies.RuntimeDependencyAnalyser attribute)

 	complete_text() (exopy.utils.widgets.qt_completers.QDelimitedCompleter method)

 	completer (exopy.utils.widgets.qt_completers.QCompletableTexEdit attribute)

 	completionNeeded (exopy.utils.widgets.qt_completers.QDelimitedCompleter attribute)

 	ComplexMenu (class in exopy.measurement.workspace.measurement_edition)

 	ComplexTask (class in exopy.tasks.tasks.base_tasks)

 	ComplexTaskExecutionEditor (class in exopy.measurement.editors.execution_editor.editor)

 	ComplexTaskView (class in exopy.tasks.tasks.base_views)

 	condition (exopy.tasks.tasks.logic.conditional_task.ConditionalTask attribute)

 	(exopy.tasks.tasks.logic.loop_exceptions_tasks.BreakTask attribute)

 	(exopy.tasks.tasks.logic.loop_exceptions_tasks.ContinueTask attribute)

 	(exopy.tasks.tasks.logic.while_task.WhileTask attribute)

 	ConditionalTask (class in exopy.tasks.tasks.logic.conditional_task)

 	ConditionalView (class in exopy.tasks.tasks.logic.views.conditional_view)

 	config (exopy.measurement.monitors.text_monitor.rules.base.RuleConfig attribute)

 	(exopy.tasks.configs.base_config_views.BaseConfigView attribute)

 	(exopy.tasks.declarations.TaskConfig attribute)

 	(exopy.tasks.widgets.building.BuilderView attribute)

 	ConfigInfos (class in exopy.tasks.infos)

 	confirm_delete() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	Connection (class in exopy.instruments.connections.base_connection)

 	connection (exopy.instruments.widgets.profile_edition.ConnectionCreationDialog attribute)

 	(exopy.instruments.widgets.profile_edition.ConnectionValidationWindow attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionDialog attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionWidget attribute)

 	ConnectionCreationDialog (class in exopy.instruments.widgets.profile_edition)

 	connections (exopy.instruments.drivers.driver_decl.Driver attribute)

 	(exopy.instruments.drivers.driver_decl.Drivers attribute)

 	(exopy.instruments.infos.DriverInfos attribute)

 	(exopy.instruments.infos.InstrumentModelInfos attribute)

 	(exopy.instruments.infos.ProfileInfos attribute)

 	(exopy.instruments.plugin.InstrumentManagerPlugin attribute)

 	(exopy.instruments.widgets.profile_edition.ProfileEditionWidget attribute)

 	ConnectionValidationWindow (class in exopy.instruments.widgets.profile_edition)

 	ContainerChange (class in exopy.utils.container_change)

 	ContainerTestingWindow (class in exopy.testing.windows)

 	context (exopy.measurement.workspace.measurement_edition.ComplexMenu attribute)

 	(exopy.measurement.workspace.measurement_edition.SimpleMenu attribute)

 	ContinueException

 	ContinueTask (class in exopy.tasks.tasks.logic.loop_exceptions_tasks)

 	ContinueView (class in exopy.tasks.tasks.logic.views.loop_exceptions_views)

 	continuous_processing (exopy.measurement.processor.MeasurementProcessor attribute)

 	contribute_to_workspace (exopy.measurement.engines.process_engine.engine_declaration.ProcessEngine attribute)

 	contribute_to_workspace() (exopy.measurement.engines.base_engine.Engine method)

 	contributed_by() (exopy.utils.plugin_tools.ExtensionsCollector method)

 	contributions (exopy.utils.plugin_tools.BaseCollector attribute)

 	copy (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	copy_node_values() (exopy.tasks.tasks.database.TaskDatabase method)

 	CopyAction (class in exopy.utils.widgets.qt_tree_menu)

 	core (exopy.tasks.tasks.base_views.RootTaskView attribute)

 	count (exopy.tasks.tasks.shared_resources.SharedCounter attribute)

 	create() (exopy.measurement.plugin.MeasurementPlugin method)

 	create_blank() (exopy.instruments.infos.ProfileInfos class method)

 	create_connection (exopy.instruments.widgets.profile_edition.ConnectionCreationDialog attribute)

 	create_connection() (exopy.instruments.plugin.InstrumentManagerPlugin method)

 	create_item() (exopy.measurement.monitors.base_monitor.Monitor method)

 	create_monitor() (exopy.measurement.monitors.text_monitor.plugin.TextMonitorPlugin method)

 	create_new_task (exopy.tasks.tasks.base_views.RootTaskView attribute)

 	create_node() (exopy.tasks.tasks.database.TaskDatabase method)

 	create_settings (exopy.instruments.widgets.profile_edition.SettingsCreationDialog attribute)

 	create_settings() (exopy.instruments.plugin.InstrumentManagerPlugin method)

 	create_task() (in module exopy.tasks.utils.building)

 	create_widget() (exopy.utils.widgets.qt_autoscroll_html.QtAutoscrollHtml method)

 	(exopy.utils.widgets.qt_completers.QtLineCompleter method)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter method)

 	(exopy.utils.widgets.qt_list_str_widget.QtListStrWidget method)

 	(exopy.utils.widgets.qt_tree_widget.QtTreeWidget method)

 	CreateRuleDialog (class in exopy.measurement.monitors.text_monitor.rules.edition_views)

 	creation (exopy.instruments.widgets.profile_edition.ProfileEditionDialog attribute)

 	(exopy.instruments.widgets.profile_edition.ProfileEditionWidget attribute)

 	custom (exopy.testing.tasks.util.CheckTask attribute)

 	custom_entries (exopy.measurement.monitors.text_monitor.monitor.TextMonitor attribute)

 	CutAction (class in exopy.utils.widgets.qt_tree_menu)

D

 	
 	data (exopy.tasks.tasks.database.DatabaseNode attribute)

 	database (exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	database_entries (exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	(exopy.tasks.tasks.base_tasks.RootTask attribute)

 	(exopy.tasks.tasks.logic.loop_task.LoopTask attribute)

 	(exopy.tasks.tasks.logic.while_task.WhileTask attribute)

 	(exopy.tasks.tasks.task_interface.BaseInterface attribute)

 	(exopy.tasks.tasks.util.log_task.LogTask attribute)

 	(exopy.tasks.tasks.util.sleep_task.SleepTask attribute)

 	database_model (exopy.measurement.editors.database_access_editor.editor.DatabaseAccessEditor attribute)

 	DatabaseAccessEditor (class in exopy.measurement.editors.database_access_editor.editor)

 	DatabaseNode (class in exopy.tasks.tasks.database)

 	DayRotatingTimeHandler (class in exopy.app.log.tools)

 	declaration (exopy.instruments.connections.base_connection.BaseConnection attribute)

 	(exopy.instruments.settings.base_settings.BaseSettings attribute)

 	(exopy.measurement.base_tool.BaseMeasureTool attribute)

 	(exopy.measurement.editors.base_editor.BaseEditor attribute)

 	(exopy.measurement.engines.base_engine.BaseEngine attribute)

 	Declarator (class in exopy.utils.declarator)

 	DeclaratorsCollector (class in exopy.utils.plugin_tools)

 	decrease_exc_level() (exopy.measurement.editors.database_access_editor.editor_model.EditorModel method)

 	decrement() (exopy.tasks.tasks.shared_resources.SharedCounter method)

 	default_monitors (exopy.measurement.plugin.MeasurementPlugin attribute)

 	default_path (exopy.tasks.tasks.base_tasks.RootTask attribute)

 	default_post_hooks (exopy.measurement.plugin.MeasurementPlugin attribute)

 	default_pre_hooks (exopy.measurement.plugin.MeasurementPlugin attribute)

 	default_rules (exopy.measurement.monitors.text_monitor.plugin.TextMonitorPlugin attribute)

 	definitions (exopy.tasks.tasks.util.definition_task.DefinitionTask attribute)

 	DefinitionTask (class in exopy.tasks.tasks.util.definition_task)

 	DefinitionView (class in exopy.tasks.tasks.util.views.definition_view)

 	delete (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	delete_child() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	delete_me (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	delete_node() (exopy.tasks.tasks.database.TaskDatabase method)

 	delete_value() (exopy.tasks.tasks.database.TaskDatabase method)

 	DeleteAction (class in exopy.utils.widgets.qt_tree_menu)

 	delimiters (exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	dep_type (exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	(exopy.tasks.tasks.task_interface.BaseInterface attribute)

 	DEP_TYPE (in module exopy.tasks.tasks.base_tasks)

 	(in module exopy.tasks.tasks.task_interface)

 	depend_on (exopy.measurement.monitors.text_monitor.entry.MonitoredEntry attribute)

 	dependencies (exopy.app.dependencies.plugin.BuildContainer attribute)

 	(exopy.measurement.measurement.Measurement attribute)

 	(exopy.tasks.declarations.Interface attribute)

 	(exopy.tasks.declarations.Task attribute)

 	(exopy.tasks.infos.ObjectDependentInfos attribute)

 	dependencies_plugin_factory() (in module exopy.app.dependencies.manifest)

 	DependenciesManifest (class in exopy.app.dependencies.manifest)

 	
 	DependenciesPlugin (class in exopy.app.dependencies.plugin)

 	depth (exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	(exopy.tasks.tasks.base_tasks.RootTask attribute)

 	description (exopy.app.errors.errors.ErrorHandler attribute)

 	(exopy.app.states.state.State attribute)

 	(exopy.instruments.connections.base_connection.Connection attribute)

 	(exopy.instruments.settings.base_settings.Settings attribute)

 	(exopy.instruments.starters.base_starter.Starter attribute)

 	(exopy.measurement.base_tool.BaseToolDeclaration attribute)

 	(exopy.measurement.editors.base_editor.Editor attribute)

 	(exopy.measurement.engines.base_engine.Engine attribute)

 	(exopy.measurement.monitors.text_monitor.rules.base.BaseRule attribute)

 	(exopy.measurement.monitors.text_monitor.rules.base.RuleConfig attribute)

 	DescriptionEditionPopup (class in exopy.measurement.monitors.text_monitor.rules.base_views)

 	destroy() (exopy.tasks.tasks.task_editor.TaskEditor method)

 	(exopy.utils.widgets.qt_tree_widget.QtTreeWidget method)

 	DIALOG_SLEEP (in module exopy.testing.fixtures)

 	dialog_sleep() (in module exopy.testing.fixtures)

 	DictTreeView (class in exopy.utils.widgets.dict_tree_view)

 	discard_view (exopy.measurement.editors.database_access_editor.editor.DatabaseAccessEditor attribute)

 	(exopy.measurement.editors.execution_editor.editor.ExecutionEditor attribute)

 	(exopy.tasks.tasks.base_views.RootTaskView attribute)

 	dispatch() (exopy.tasks.tasks.decorators.ThreadDispatcher method)

 	display_filters (exopy.tasks.widgets.browsing.TaskSelector attribute)

 	displayed_entries (exopy.measurement.monitors.text_monitor.monitor.TextMonitor attribute)

 	doc (exopy.tasks.widgets.saving.TemplateSaverModel attribute)

 	dock_area (exopy.measurement.workspace.monitors_window.MonitorsWindow attribute)

 	dock_area() (exopy.measurement.workspace.workspace.MeasurementSpace property)

 	dock_item (exopy.measurement.workspace.measurement_edition.MeasEditionView attribute)

 	DockItemTestingWindow (class in exopy.testing.windows)

 	doRollover() (exopy.app.log.tools.DayRotatingTimeHandler method)

 	drag_drop (exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	Driver (class in exopy.instruments.drivers.driver_decl)

 	driver (exopy.instruments.drivers.driver_decl.Driver attribute)

 	(exopy.instruments.widgets.profile_edition.ConnectionValidationWindow attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionDialog attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionWidget attribute)

 	(exopy.tasks.tasks.instr_task.InstrumentTask attribute)

 	DRIVER_ANALYSER (exopy.tasks.infos.InterfaceInfos attribute)

 	(exopy.tasks.infos.ObjectDependentInfos attribute)

 	(exopy.tasks.infos.TaskInfos attribute)

 	DriverInfos (class in exopy.instruments.infos)

 	Drivers (class in exopy.instruments.drivers.driver_decl)

 	drivers (exopy.instruments.infos.InstrumentModelInfos attribute)

 	drop_object() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	DummyEditor (class in exopy.testing.measurement.dummies)

 	DummyEngine (class in exopy.testing.measurement.dummies)

 	DummyHook (class in exopy.testing.measurement.dummies)

 	DummyMonitor (class in exopy.testing.measurement.dummies)

 	DummyPostHook (class in exopy.testing.measurement.dummies)

 	DummyPreHook (class in exopy.testing.measurement.dummies)

E

 	
 	e (exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	(exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	(exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	edit_view() (exopy.app.preferences.preferences.Preferences method)

 	edited_measurements (exopy.measurement.plugin.MeasurementPlugin attribute)

 	Editor (class in exopy.measurement.editors.base_editor)

 	editor (exopy.instruments.widgets.profile_edition.ConnectionValidationWindow attribute)

 	(exopy.instruments.widgets.profile_edition.RenameSettingsPopup attribute)

 	(exopy.tasks.tasks.base_views.ComplexTaskView attribute)

 	(exopy.tasks.tasks.task_editor.EmptyEditorButton attribute)

 	(exopy.tasks.tasks.task_editor.TaskEditorButton attribute)

 	EditorModel (class in exopy.measurement.editors.database_access_editor.editor_model)

 	editors (exopy.measurement.plugin.MeasurementPlugin attribute)

 	(exopy.measurement.workspace.measurement_edition.MeasEditionView attribute)

 	EditRulesView (class in exopy.measurement.monitors.text_monitor.rules.edition_views)

 	emit() (exopy.app.log.tools.GuiHandler method), [1]

 	(exopy.app.log.tools.QueueHandler method)

 	EmptyEditorButton (class in exopy.tasks.tasks.task_editor)

 	Engine (class in exopy.measurement.engines.base_engine)

 	engine (exopy.measurement.processor.MeasurementProcessor attribute)

 	engine_policy (exopy.measurement.plugin.MeasurementPlugin attribute)

 	engines (exopy.measurement.plugin.MeasurementPlugin attribute)

 	EngineSelector (class in exopy.measurement.engines.selection)

 	enqueue() (exopy.app.log.tools.QueueHandler method)

 	(exopy.measurement.workspace.measurement_tracking.MeasurementTracker method)

 	enqueue_measurement() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	enqueue_update() (exopy.measurement.engines.utils.MeasureSpy method)

 	enqueued_measurements (exopy.measurement.plugin.MeasurementPlugin attribute)

 	enter_edition_state() (exopy.measurement.measurement.Measurement method)

 	enter_error_gathering() (exopy.app.errors.plugin.ErrorsPlugin method)

 	enter_rename (exopy.measurement.workspace.measurement_edition.TaskTreeNode attribute)

 	enter_rename() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	enter_running_state() (exopy.measurement.measurement.Measurement method)

 	entries (exopy.measurement.editors.database_access_editor.editor_model.NodeModel attribute)

 	(exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	entries_updater (exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	entry (exopy.measurement.monitors.text_monitor.custom_entry_edition.EntryDialog attribute)

 	EntryDialog (class in exopy.measurement.monitors.text_monitor.custom_entry_edition)

 	ErrorDialogException

 	ErrorHandler (class in exopy.app.errors.errors)

 	errors (exopy.app.dependencies.plugin.BuildContainer attribute)

 	(exopy.app.errors.plugin.ErrorsPlugin attribute)

 	(exopy.app.errors.widgets.BasicErrorsDisplay attribute)

 	(exopy.app.errors.widgets.ErrorsDialog attribute)

 	(exopy.app.errors.widgets.HierarchicalErrorsDisplay attribute)

 	(exopy.measurement.engines.base_engine.ExecutionInfos attribute)

 	(exopy.measurement.workspace.checks_display.ChecksDisplay attribute)

 	(exopy.tasks.tasks.base_tasks.RootTask attribute)

 	errors_plugin_factory() (in module exopy.app.errors.manifest)

 	errors_to_msg() (in module exopy.measurement.processor)

 	ErrorsDialog (class in exopy.app.errors.widgets)

 	ErrorsManifest (class in exopy.app.errors.manifest)

 	ErrorsPlugin (class in exopy.app.errors.plugin)

 	exceptions (exopy.measurement.editors.database_access_editor.editor_model.NodeModel attribute)

 	ExceptionTask (class in exopy.testing.tasks.util)

 	excluded (exopy.tasks.tasks.database.TaskDatabase attribute)

 	ExecutionDockItem (class in exopy.measurement.workspace.measurement_execution)

 	ExecutionEditor (class in exopy.measurement.editors.execution_editor.editor)

 	ExecutionEditorModel (class in exopy.measurement.editors.execution_editor.editor_model)

 	ExecutionInfos (class in exopy.measurement.engines.base_engine)

 	existing (exopy.instruments.widgets.profile_edition.ConnectionCreationDialog attribute)

 	(exopy.instruments.widgets.profile_edition.RenameSettingsPopup attribute)

 	(exopy.instruments.widgets.profile_edition.SettingsCreationDialog attribute)

 	(exopy.instruments.widgets.profile_edition.SetValidator attribute)

 	exit_error_gathering() (exopy.app.errors.plugin.ErrorsPlugin method)

 	exit_on_err() (in module exopy.testing.util)

 	exit_rename() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	EXOPY (in module exopy.testing.fixtures)

 	
 exopy.app.app_extensions

 	module

 	
 exopy.app.app_manifest

 	module

 	
 exopy.app.app_plugin

 	module

 	
 exopy.app.dependencies.dependencies

 	module

 	
 exopy.app.dependencies.manifest

 	module

 	
 exopy.app.dependencies.plugin

 	module

 	
 exopy.app.errors.errors

 	module

 	
 exopy.app.errors.manifest

 	module

 	
 exopy.app.errors.plugin

 	module

 	
 exopy.app.errors.widgets

 	module

 	
 exopy.app.log.manifest

 	module

 	
 exopy.app.log.plugin

 	module

 	
 exopy.app.log.tools

 	module

 	
 exopy.app.packages.manifest

 	module

 	
 exopy.app.packages.plugin

 	module

 	
 exopy.app.preferences.manifest

 	module

 	
 exopy.app.preferences.plugin

 	module

 	
 exopy.app.preferences.preferences

 	module

 	
 exopy.app.states.manifest

 	module

 	
 exopy.app.states.plugin

 	module

 	
 exopy.app.states.state

 	module

 	
 exopy.instruments.connections.base_connection

 	module

 	
 exopy.instruments.connections.visa_connections

 	module

 	
 exopy.instruments.drivers.driver_decl

 	module

 	
 exopy.instruments.infos

 	module

 	
 exopy.instruments.manifest

 	module

 	
 exopy.instruments.manufacturer_aliases

 	module

 	
 exopy.instruments.plugin

 	module

 	
 exopy.instruments.settings.base_settings

 	module

 	
 exopy.instruments.starters.base_starter

 	module

 	
 exopy.instruments.starters.exceptions

 	module

 	
 exopy.instruments.user

 	module

 	
 exopy.instruments.widgets.browsing

 	module

 	
 exopy.instruments.widgets.instrument_selection

 	module

 	
 exopy.instruments.widgets.profile_edition

 	module

 	
 exopy.instruments.widgets.profile_selection

 	module

 	
 exopy.measurement.base_tool

 	module

 	
 exopy.measurement.container

 	module

 	
 exopy.measurement.editors.base_editor

 	module

 	
 exopy.measurement.editors.database_access_editor.editor

 	module

 	
 exopy.measurement.editors.database_access_editor.editor_model

 	module

 	
 exopy.measurement.editors.execution_editor.editor

 	module

 	
 exopy.measurement.editors.execution_editor.editor_model

 	module

 	
 exopy.measurement.editors.standard_editor

 	module

 	
 exopy.measurement.engines.base_engine

 	module

 	
 exopy.measurement.engines.process_engine.engine

 	module

 	
 exopy.measurement.engines.process_engine.engine_declaration

 	module

 	
 exopy.measurement.engines.process_engine.subprocess

 	module

 	
 exopy.measurement.engines.selection

 	module

 	
 exopy.measurement.engines.utils

 	module

 	
 exopy.measurement.hooks.base_hooks

 	module

 	
 exopy.measurement.hooks.internal_checks

 	module

 	
 exopy.measurement.manifest

 	module

 	
 exopy.measurement.measurement

 	module

 	
 exopy.measurement.monitors.base_monitor

 	module

 	
 exopy.measurement.monitors.text_monitor.custom_entry_edition

 	module

 	
 exopy.measurement.monitors.text_monitor.entry

 	module

 	
 exopy.measurement.monitors.text_monitor.manifest

 	module

 	
 exopy.measurement.monitors.text_monitor.monitor

 	module

 	
 exopy.measurement.monitors.text_monitor.monitor_views

 	module

 	
 exopy.measurement.monitors.text_monitor.plugin

 	module

 	
 exopy.measurement.monitors.text_monitor.rules.base

 	module

 	
 exopy.measurement.monitors.text_monitor.rules.base_views

 	module

 	
 	
 exopy.measurement.monitors.text_monitor.rules.edition_views

 	module

 	
 exopy.measurement.monitors.text_monitor.rules.infos

 	module

 	
 exopy.measurement.monitors.text_monitor.rules.std_rules

 	module

 	
 exopy.measurement.monitors.text_monitor.rules.std_views

 	module

 	
 exopy.measurement.plugin

 	module

 	
 exopy.measurement.processor

 	module

 	
 exopy.measurement.workspace.checks_display

 	module

 	
 exopy.measurement.workspace.content

 	module

 	
 exopy.measurement.workspace.manifest

 	module

 	
 exopy.measurement.workspace.measurement_edition

 	module

 	
 exopy.measurement.workspace.measurement_execution

 	module

 	
 exopy.measurement.workspace.measurement_tracking

 	module

 	
 exopy.measurement.workspace.monitors_window

 	module

 	
 exopy.measurement.workspace.tools_edition

 	module

 	
 exopy.measurement.workspace.workspace

 	module

 	
 exopy.tasks.configs.base_config_views

 	module

 	
 exopy.tasks.configs.base_configs

 	module

 	
 exopy.tasks.configs.loop_config

 	module

 	
 exopy.tasks.configs.loop_config_view

 	module

 	
 exopy.tasks.declarations

 	module

 	
 exopy.tasks.filters

 	module

 	
 exopy.tasks.infos

 	module

 	
 exopy.tasks.manifest

 	module

 	
 exopy.tasks.plugin

 	module

 	
 exopy.tasks.tasks.base_tasks

 	module

 	
 exopy.tasks.tasks.base_views

 	module

 	
 exopy.tasks.tasks.database

 	module

 	
 exopy.tasks.tasks.decorators

 	module

 	
 exopy.tasks.tasks.instr_task

 	module

 	
 exopy.tasks.tasks.instr_view

 	module

 	
 exopy.tasks.tasks.logic.conditional_task

 	module

 	
 exopy.tasks.tasks.logic.declarations

 	module

 	
 exopy.tasks.tasks.logic.loop_exceptions

 	module

 	
 exopy.tasks.tasks.logic.loop_exceptions_tasks

 	module

 	
 exopy.tasks.tasks.logic.loop_iterable_interface

 	module

 	
 exopy.tasks.tasks.logic.loop_linspace_interface

 	module

 	
 exopy.tasks.tasks.logic.loop_task

 	module

 	
 exopy.tasks.tasks.logic.views.conditional_view

 	module

 	
 exopy.tasks.tasks.logic.views.loop_exceptions_views

 	module

 	
 exopy.tasks.tasks.logic.views.loop_iterable_view

 	module

 	
 exopy.tasks.tasks.logic.views.loop_linspace_view

 	module

 	
 exopy.tasks.tasks.logic.views.loop_view

 	module

 	
 exopy.tasks.tasks.logic.views.while_view

 	module

 	
 exopy.tasks.tasks.logic.while_task

 	module

 	
 exopy.tasks.tasks.shared_resources

 	module

 	
 exopy.tasks.tasks.string_evaluation

 	module

 	
 exopy.tasks.tasks.task_editor

 	module

 	
 exopy.tasks.tasks.task_interface

 	module

 	
 exopy.tasks.tasks.util.declarations

 	module

 	
 exopy.tasks.tasks.util.definition_task

 	module

 	
 exopy.tasks.tasks.util.formula_task

 	module

 	
 exopy.tasks.tasks.util.log_task

 	module

 	
 exopy.tasks.tasks.util.sleep_task

 	module

 	
 exopy.tasks.tasks.util.views.definition_view

 	module

 	
 exopy.tasks.tasks.util.views.formula_view

 	module

 	
 exopy.tasks.tasks.util.views.log_view

 	module

 	
 exopy.tasks.tasks.util.views.sleep_view

 	module

 	
 exopy.tasks.tasks.validators

 	module

 	
 exopy.tasks.utils.building

 	module

 	
 exopy.tasks.utils.saving

 	module

 	
 exopy.tasks.utils.templates

 	module

 	
 exopy.tasks.widgets.browsing

 	module

 	
 exopy.tasks.widgets.building

 	module

 	
 exopy.tasks.widgets.saving

 	module

 	
 exopy.testing.fixtures

 	module

 	
 exopy.testing.instruments.fixtures

 	module

 	
 exopy.testing.measurement.contributions

 	module

 	
 exopy.testing.measurement.dummies

 	module

 	
 exopy.testing.measurement.fixtures

 	module

 	
 exopy.testing.measurement.monitors.text_monitor.fixtures

 	module

 	
 exopy.testing.measurement.workspace.fixtures

 	module

 	
 exopy.testing.tasks.fixtures

 	module

 	
 exopy.testing.tasks.util

 	module

 	
 exopy.testing.util

 	module

 	
 exopy.testing.windows

 	module

 	
 exopy.utils.atom_util

 	module

 	
 exopy.utils.configobj_ops

 	module

 	
 exopy.utils.container_change

 	module

 	
 exopy.utils.declarator

 	module

 	
 exopy.utils.enaml_destroy_hook

 	module

 	
 exopy.utils.flags

 	module

 	
 exopy.utils.mapping_utils

 	module

 	
 exopy.utils.plugin_tools

 	module

 	
 exopy.utils.priority_heap

 	module

 	
 exopy.utils.transformers

 	module

 	
 exopy.utils.watchdog

 	module

 	
 exopy.utils.widgets.dict_editor

 	module

 	
 exopy.utils.widgets.dict_tree_view

 	module

 	
 exopy.utils.widgets.list_editor

 	module

 	
 exopy.utils.widgets.qt_autoscroll_html

 	module

 	
 exopy.utils.widgets.qt_clipboard

 	module

 	
 exopy.utils.widgets.qt_completers

 	module

 	
 exopy.utils.widgets.qt_list_str_widget

 	module

 	
 exopy.utils.widgets.qt_tree_menu

 	module

 	
 exopy.utils.widgets.qt_tree_widget

 	module

 	
 exopy.utils.widgets.tree_nodes

 	module

 	
 exopy.version

 	module

 	exopy_path() (in module exopy.testing.util)

 	ext_class (exopy.utils.plugin_tools.BaseCollector attribute)

 	extended (exopy.tasks.declarations.Interface attribute)

 	ExtensionsCollector (class in exopy.utils.plugin_tools)

F

 	
 	f (exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	(exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	(exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	factory (exopy.utils.widgets.qt_tree_menu.NewAction attribute), [1]

 	fail_check (exopy.testing.measurement.dummies.DummyHook attribute)

 	(exopy.testing.measurement.dummies.DummyPostHook attribute)

 	(exopy.testing.measurement.dummies.DummyPreHook attribute)

 	fail_perform (exopy.testing.measurement.dummies.DummyEngine attribute)

 	fail_run (exopy.testing.measurement.dummies.DummyHook attribute)

 	(exopy.testing.measurement.dummies.DummyPostHook attribute)

 	(exopy.testing.measurement.dummies.DummyPreHook attribute)

 	features (exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	Feval (class in exopy.tasks.tasks.validators)

 	FieldFieldCompleterEditor (class in exopy.utils.widgets.dict_editor)

 	FieldFieldEditor (class in exopy.utils.widgets.dict_editor)

 	filename (exopy.tasks.widgets.saving.TemplateSaverModel attribute)

 	FilesResource (class in exopy.tasks.tasks.shared_resources)

 	filter() (exopy.measurement.engines.process_engine.engine_declaration.ProcFilter method)

 	filter_drivers (exopy.instruments.widgets.profile_selection.ProfileSelectionDialog attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionWidget attribute)

 	(exopy.tasks.tasks.instr_view.InstrTaskView attribute)

 	filter_ids (exopy.app.log.plugin.LogPlugin attribute)

 	filter_profiles (exopy.instruments.widgets.profile_selection.ProfileSelectionDialog attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionWidget attribute)

 	(exopy.tasks.tasks.instr_view.InstrTaskView attribute)

 	
 	filter_tasks() (exopy.tasks.filters.MetadataTaskFilter method)

 	(exopy.tasks.filters.SubclassTaskFilter method)

 	(exopy.tasks.filters.TaskFilter method)

 	filters (exopy.tasks.plugin.TaskManagerPlugin attribute)

 	find_decl (exopy.measurement.workspace.tools_edition.ToolSelector attribute)

 	find_matching_drivers() (exopy.instruments.infos.InstrumentModelInfos method)

 	find_next_measurement() (exopy.measurement.plugin.MeasurementPlugin method)

 	Flags (class in exopy.testing.measurement.contributions)

 	flags (exopy.utils.flags.BitFlag attribute)

 	float_default (exopy.measurement.monitors.base_monitor.BaseMonitorItem attribute)

 	flush() (exopy.app.log.tools.StreamToLogRedirector method)

 	focus_gained() (exopy.utils.widgets.qt_completers.QtLineCompleter method)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter method)

 	FoldableTaskEditor (class in exopy.tasks.tasks.task_editor)

 	folder (exopy.tasks.widgets.saving.TemplateSaverModel attribute)

 	forced_enqueued (exopy.measurement.measurement.Measurement attribute)

 	foreground (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	format_and_eval_string() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	format_error() (in module exopy.app.errors.widgets)

 	format_name() (in module exopy.tasks.tasks.logic.views.loop_view)

 	format_string() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	FormatRule (class in exopy.measurement.monitors.text_monitor.rules.std_rules)

 	FormatRuleView (class in exopy.measurement.monitors.text_monitor.rules.std_views)

 	formatting (exopy.measurement.monitors.text_monitor.entry.MonitoredEntry attribute)

 	formulas (exopy.tasks.tasks.util.formula_task.FormulaTask attribute)

 	FormulaTask (class in exopy.tasks.tasks.util.formula_task)

 	FormulaView (class in exopy.tasks.tasks.util.views.formula_view)

G

 	
 	gather_children() (exopy.tasks.tasks.base_tasks.ComplexTask method)

 	gather_infos (exopy.instruments.connections.visa_connections.BaseVisaConnection attribute)

 	(exopy.instruments.connections.visa_connections.VisaRaw attribute)

 	(exopy.instruments.connections.visa_connections.VisaTCPIP attribute)

 	gather_infos() (exopy.instruments.connections.base_connection.BaseConnection method)

 	(exopy.instruments.settings.base_settings.BaseSettings method)

 	get() (exopy.tasks.tasks.shared_resources.SharedDict method)

 	get_add() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	get_aliases() (exopy.instruments.plugin.InstrumentManagerPlugin method)

 	get_background() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	get_build_dependencies() (exopy.measurement.measurement.MeasurementDependencies method)

 	get_children() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	get_children_id() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	get_config() (exopy.tasks.plugin.TaskManagerPlugin method)

 	get_declarations() (exopy.measurement.plugin.MeasurementPlugin method)

 	get_drag_object() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	get_drivers() (exopy.instruments.plugin.InstrumentManagerPlugin method)

 	get_entries_indexes() (exopy.tasks.tasks.database.TaskDatabase method)

 	get_error_path() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	(exopy.tasks.tasks.task_interface.InterfaceableInterfaceMixin method)

 	(exopy.tasks.tasks.task_interface.InterfaceableMixin method)

 	(exopy.tasks.tasks.task_interface.InterfaceableTaskMixin method)

 	get_foreground() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	get_from_database() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	get_group() (exopy.utils.declarator.Declarator method)

 	get_icon() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	get_icon_path() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	get_infos (exopy.tasks.widgets.saving.TemplateSaverDialog attribute)

 	get_interface() (exopy.tasks.plugin.TaskManagerPlugin method)

 	get_interface_infos() (exopy.tasks.plugin.TaskManagerPlugin method)

 	get_interfaces() (exopy.tasks.plugin.TaskManagerPlugin method)

 	get_interfaces_for (exopy.tasks.tasks.base_views.RootTaskView attribute)

 	get_label (exopy.measurement.workspace.measurement_edition.TaskTreeNode attribute)

 	get_label() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	get_menu() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	get_name() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	
 	get_node() (exopy.utils.widgets.qt_tree_widget.QtTreeWidget method)

 	get_object() (exopy.utils.widgets.qt_tree_widget.QtTreeWidget method)

 	get_parent() (exopy.utils.widgets.qt_tree_widget.QtTreeWidget method)

 	get_path() (exopy.utils.declarator.Declarator method)

 	(exopy.utils.declarator.GroupDeclarator method)

 	get_plugin_preferences() (exopy.app.preferences.plugin.PrefPlugin method)

 	(in module exopy.app.preferences.manifest)

 	get_profiles() (exopy.instruments.plugin.InstrumentManagerPlugin method)

 	get_rule_type() (exopy.measurement.monitors.text_monitor.plugin.TextMonitorPlugin method)

 	get_rule_view() (exopy.measurement.monitors.text_monitor.plugin.TextMonitorPlugin method)

 	get_runtime_dependencies() (exopy.measurement.measurement.MeasurementDependencies method)

 	get_selected_measurement() (exopy.measurement.workspace.measurement_tracking.MeasurementTracker method)

 	get_state() (exopy.app.states.plugin.StatePlugin method)

 	(exopy.measurement.base_tool.BaseMeasureTool method)

 	(exopy.measurement.monitors.text_monitor.monitor.TextMonitor method)

 	(in module exopy.app.states.manifest)

 	get_task() (exopy.tasks.plugin.TaskManagerPlugin method)

 	get_task_class() (exopy.tasks.declarations.TaskConfig method)

 	get_task_infos() (exopy.tasks.plugin.TaskManagerPlugin method)

 	get_tasks() (exopy.tasks.plugin.TaskManagerPlugin method)

 	get_tooltip() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	get_value() (exopy.tasks.tasks.database.TaskDatabase method)

 	get_values_by_index() (exopy.tasks.tasks.database.TaskDatabase method)

 	get_window() (in module exopy.testing.util)

 	go_on (exopy.testing.measurement.dummies.DummyEngine attribute)

 	(exopy.testing.measurement.dummies.DummyHook attribute)

 	go_on_resumed (exopy.testing.measurement.dummies.DummyEngine attribute)

 	(exopy.testing.measurement.dummies.DummyHook attribute)

 	go_on_resuming (exopy.testing.measurement.dummies.DummyEngine attribute)

 	(exopy.testing.measurement.dummies.DummyHook attribute)

 	go_to_path() (exopy.tasks.tasks.database.TaskDatabase method)

 	group (exopy.tasks.filters.GroupTaskFilter attribute)

 	(exopy.utils.declarator.GroupDeclarator attribute)

 	GroupDeclarator (class in exopy.utils.declarator)

 	GroupTaskFilter (class in exopy.tasks.filters)

 	gui_model (exopy.app.log.plugin.LogPlugin attribute)

 	GuiHandler (class in exopy.app.log.tools)

H

 	
 	handle() (exopy.app.errors.errors.ErrorHandler method)

 	handle_database_entries_change() (exopy.measurement.monitors.base_monitor.BaseMonitor method)

 	(exopy.measurement.monitors.text_monitor.monitor.TextMonitor method)

 	(exopy.testing.measurement.dummies.DummyMonitor method)

 	handle_database_node_change() (exopy.measurement.monitors.base_monitor.BaseMonitor method)

 	handle_database_nodes_change() (exopy.measurement.monitors.text_monitor.monitor.TextMonitor method)

 	(exopy.testing.measurement.dummies.DummyMonitor method)

 	handle_dialog() (in module exopy.testing.util)

 	handle_question() (in module exopy.testing.util)

 	handle_stop_pause() (in module exopy.tasks.tasks.decorators)

 	handler_ids (exopy.app.log.plugin.LogPlugin attribute)

 	has_children() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	has_exceptions (exopy.measurement.editors.database_access_editor.editor_model.NodeModel attribute)

 	has_root (exopy.tasks.tasks.base_tasks.ComplexTask attribute)

 	(exopy.tasks.tasks.base_tasks.RootTask attribute)

 	
 	has_view (exopy.measurement.base_tool.BaseToolDeclaration attribute)

 	HasPrefAtom (class in exopy.utils.atom_util)

 	HasPreferencesPlugin (class in exopy.utils.plugin_tools)

 	hidden_entries (exopy.measurement.monitors.text_monitor.monitor.TextMonitor attribute)

 	hide_entries (exopy.measurement.monitors.text_monitor.rules.std_rules.FormatRule attribute)

 	hide_root (exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	HierarchicalErrorsDisplay (class in exopy.app.errors.widgets)

 	host_address (exopy.instruments.connections.visa_connections.VisaTCPIP attribute)

 	hug_height (exopy.utils.widgets.qt_autoscroll_html.QtAutoscrollHtml attribute)

 	(exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	(exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	hug_width (exopy.utils.widgets.qt_autoscroll_html.QtAutoscrollHtml attribute)

 	(exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	(exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

I

 	
 	icon_group (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	icon_item (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	icon_open (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	icon_path (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	id (exopy.app.app_extensions.AppClosed attribute), [1]

 	(exopy.app.app_extensions.AppClosing attribute), [1]

 	(exopy.app.app_extensions.AppStartup attribute)

 	(exopy.app.dependencies.dependencies.BuildDependency attribute)

 	(exopy.app.dependencies.dependencies.RuntimeDependencyAnalyser attribute)

 	(exopy.app.dependencies.dependencies.RuntimeDependencyCollector attribute)

 	(exopy.app.errors.errors.ErrorHandler attribute)

 	(exopy.app.states.state.State attribute)

 	(exopy.instruments.connections.base_connection.Connection attribute)

 	(exopy.instruments.drivers.driver_decl.Driver attribute)

 	(exopy.instruments.infos.DriverInfos attribute)

 	(exopy.instruments.infos.InstrumentModelInfos attribute)

 	(exopy.instruments.infos.ProfileInfos attribute)

 	(exopy.instruments.manufacturer_aliases.ManufacturerAlias attribute)

 	(exopy.instruments.settings.base_settings.Settings attribute)

 	(exopy.instruments.starters.base_starter.BaseStarter attribute)

 	(exopy.instruments.starters.base_starter.Starter attribute)

 	(exopy.instruments.user.InstrUser attribute)

 	(exopy.measurement.base_tool.BaseToolDeclaration attribute)

 	(exopy.measurement.editors.base_editor.Editor attribute)

 	(exopy.measurement.engines.base_engine.Engine attribute)

 	(exopy.measurement.engines.base_engine.ExecutionInfos attribute)

 	(exopy.measurement.measurement.Measurement attribute)

 	(exopy.measurement.monitors.text_monitor.rules.base.BaseRule attribute)

 	(exopy.measurement.monitors.text_monitor.rules.base.RuleConfig attribute)

 	(exopy.tasks.declarations.Interface attribute)

 	(exopy.tasks.declarations.Task attribute)

 	(exopy.tasks.declarations.TaskConfig attribute)

 	(exopy.tasks.filters.TaskFilter attribute)

 	ids (exopy.measurement.monitors.text_monitor.rules.base_views.RuleIdValidator attribute)

 	ids_to_unique_names() (in module exopy.utils.transformers)

 	IInterface (class in exopy.tasks.tasks.task_interface)

 	import_and_get() (in module exopy.utils.declarator)

 	import_monitor_plugin() (in module exopy.measurement.monitors.text_monitor.monitor)

 	inactive (exopy.tasks.tasks.decorators.ThreadDispatcher attribute)

 	include_configobj() (in module exopy.utils.configobj_ops)

 	increase_exc_level() (exopy.measurement.editors.database_access_editor.editor_model.EditorModel method)

 	increment() (exopy.tasks.tasks.shared_resources.SharedCounter method)

 	index (exopy.utils.widgets.list_editor.PopupListMenu attribute)

 	INDEX_GUARD (in module exopy.utils.widgets.qt_tree_widget)

 	infos (exopy.instruments.connections.visa_connections.BaseVisaConnection attribute)

 	(exopy.instruments.infos.DriverInfos attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionWidget attribute)

 	(exopy.measurement.measurement.Measurement attribute)

 	initialize() (exopy.tasks.tasks.task_editor.TaskEditor method)

 	(exopy.utils.widgets.qt_list_str_widget.QtListStrWidget method)

 	(exopy.utils.widgets.tree_nodes.TreeNode method)

 	
 	inline (exopy.tasks.tasks.logic.views.loop_iterable_view.IterableLoopLabel attribute)

 	insert (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	insert_child() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	install_excepthook() (exopy.app.errors.plugin.ErrorsPlugin method)

 	instance() (exopy.utils.widgets.qt_clipboard.PyMimeData method)

 	instance_type() (exopy.utils.widgets.qt_clipboard.PyMimeData method)

 	instr_label (exopy.tasks.tasks.instr_view.InstrTaskView attribute)

 	instr_model (exopy.instruments.widgets.instrument_selection.ModelSelectionDialog attribute)

 	instr_selection (exopy.tasks.tasks.instr_view.InstrTaskView attribute)

 	instr_workbench() (in module exopy.testing.instruments.fixtures)

 	InstrIOError

 	InstrsResource (class in exopy.tasks.tasks.shared_resources)

 	InstrTaskView (class in exopy.tasks.tasks.instr_view)

 	InstrumentManagerManifest (class in exopy.instruments.manifest)

 	InstrumentManagerPlugin (class in exopy.instruments.plugin)

 	InstrumentModelInfos (class in exopy.instruments.infos)

 	instruments (exopy.instruments.infos.SeriesInfos attribute)

 	(exopy.instruments.plugin.InstrumentManagerPlugin attribute)

 	(exopy.tasks.declarations.Interface attribute)

 	(exopy.tasks.declarations.Task attribute)

 	(exopy.tasks.infos.ObjectDependentInfos attribute)

 	InstrumentTask (class in exopy.tasks.tasks.instr_task)

 	InstrUser (class in exopy.instruments.user)

 	Interface (class in exopy.tasks.declarations)

 	interface (exopy.tasks.declarations.Interface attribute)

 	(exopy.tasks.tasks.logic.loop_task.LoopTask attribute)

 	(exopy.tasks.tasks.logic.views.loop_iterable_view.IterableLoopField attribute)

 	(exopy.tasks.tasks.logic.views.loop_iterable_view.IterableLoopLabel attribute)

 	(exopy.tasks.tasks.logic.views.loop_linspace_view.LinspaceLoopView attribute)

 	(exopy.tasks.tasks.task_interface.InterfaceableInterfaceMixin attribute)

 	(exopy.tasks.tasks.task_interface.InterfaceableMixin attribute)

 	(exopy.tasks.tasks.task_interface.InterfaceableTaskMixin attribute)

 	interface_id (exopy.tasks.tasks.task_interface.BaseInterface attribute)

 	interface_type (exopy.instruments.connections.visa_connections.BaseVisaConnection attribute)

 	InterfaceableInterfaceMixin (class in exopy.tasks.tasks.task_interface)

 	InterfaceableMixin (class in exopy.tasks.tasks.task_interface)

 	InterfaceableTaskMixin (class in exopy.tasks.tasks.task_interface)

 	InterfaceInfos (class in exopy.tasks.infos)

 	Interfaces (class in exopy.tasks.declarations)

 	interfaces (exopy.tasks.infos.ObjectDependentInfos attribute)

 	InternalChecksHook (class in exopy.measurement.hooks.internal_checks)

 	is_addable() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	is_meant_for() (exopy.measurement.editors.base_editor.Editor method)

 	is_node_for() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	is_registered (exopy.utils.declarator.Declarator attribute)

 	is_warning (exopy.measurement.workspace.checks_display.ChecksDisplay attribute)

 	items (exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	items() (exopy.tasks.tasks.shared_resources.SharedDict method)

 	iterable (exopy.tasks.tasks.logic.loop_iterable_interface.IterableLoopInterface attribute)

 	IterableLoopField (class in exopy.tasks.tasks.logic.views.loop_iterable_view)

 	IterableLoopInterface (class in exopy.tasks.tasks.logic.loop_iterable_interface)

 	IterableLoopLabel (class in exopy.tasks.tasks.logic.views.loop_iterable_view)

K

 	
 	k (exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	(exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	(exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	key (exopy.utils.widgets.dict_editor.Pair attribute)

 	keyPressEvent() (exopy.utils.widgets.qt_completers.QCompletableTexEdit method)

 	kind (exopy.app.errors.widgets.BasicErrorsDisplay attribute)

 	(exopy.app.errors.widgets.HierarchicalErrorsDisplay attribute)

 	(exopy.app.errors.widgets.UnknownErrorWidget attribute)

 	(exopy.instruments.drivers.driver_decl.Driver attribute)

 	(exopy.instruments.drivers.driver_decl.Drivers attribute)

 	(exopy.instruments.infos.InstrumentModelInfos attribute)

 	(exopy.instruments.infos.ManufacturerInfos attribute)

 	(exopy.instruments.infos.ManufacturersHolder attribute)

 	(exopy.instruments.infos.SeriesInfos attribute)

 	(exopy.instruments.widgets.instrument_selection.ModelSelectionWidget attribute)

 	(exopy.measurement.workspace.tools_edition.ToolsEditor attribute)

 	(exopy.measurement.workspace.tools_edition.ToolSelector attribute)

 	
 	known_monitored_entries (exopy.measurement.monitors.text_monitor.monitor.TextMonitor attribute)

 	kwargs (exopy.testing.util.CallSpy attribute)

 	(exopy.utils.widgets.qt_tree_menu.NewAction attribute), [1]

L

 	
 	label (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	label_maker() (in module exopy.measurement.workspace.measurement_execution)

 	lan_device_name (exopy.instruments.connections.visa_connections.VisaTCPIP attribute)

 	last_directory (exopy.app.preferences.plugin.PrefPlugin attribute)

 	last_selected_measurement (exopy.measurement.workspace.workspace.MeasurementSpace attribute)

 	layout_constraints (exopy.instruments.connections.visa_connections.VisaTCPIP attribute)

 	(exopy.instruments.widgets.instrument_selection.ModelView attribute)

 	(exopy.measurement.workspace.measurement_execution.MeasView attribute)

 	(exopy.tasks.tasks.logic.views.loop_view.LoopView attribute)

 	layout_constraints() (exopy.tasks.tasks.task_editor.TaskEditor method)

 	(exopy.utils.widgets.list_editor.ListContainer method)

 	Leaf (class in exopy.utils.widgets.dict_tree_view)

 	link_to_measurement() (exopy.measurement.base_tool.BaseMeasureTool method)

 	(exopy.measurement.monitors.base_monitor.BaseMonitor method)

 	(exopy.measurement.monitors.text_monitor.monitor.TextMonitor method)

 	LinspaceLoopInterface (class in exopy.tasks.tasks.logic.loop_linspace_interface)

 	LinspaceLoopView (class in exopy.tasks.tasks.logic.views.loop_linspace_view)

 	list_accessible_database_entries() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	list_accessible_entries() (exopy.tasks.tasks.database.TaskDatabase method)

 	list_all_entries() (exopy.tasks.tasks.database.TaskDatabase method)

 	list_nodes() (exopy.tasks.tasks.database.TaskDatabase method)

 	list_referrers() (exopy.testing.util.ObjectTracker method)

 	list_runtimes() (exopy.measurement.hooks.base_hooks.BaseExecutionHook method)

 	(exopy.testing.measurement.dummies.DummyPreHook method)

 	list_tasks() (exopy.tasks.plugin.TaskManagerPlugin method)

 	ListContainer (class in exopy.utils.widgets.list_editor)

 	load() (exopy.measurement.measurement.Measurement class method)

 	
 	load_auto_task_names() (exopy.tasks.plugin.TaskManagerPlugin method)

 	load_measurement() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	(in module exopy.measurement.workspace.manifest)

 	load_preferences() (exopy.app.preferences.plugin.PrefPlugin method)

 	(in module exopy.app.preferences.manifest)

 	load_template() (in module exopy.measurement.workspace.manifest)

 	(in module exopy.tasks.utils.templates)

 	loading_method (exopy.app.preferences.preferences.Preferences attribute)

 	local_paths() (exopy.utils.widgets.qt_clipboard.PyMimeData method)

 	locked() (exopy.tasks.tasks.shared_resources.SharedDict method)

 	log_model (exopy.measurement.workspace.workspace.MeasurementSpace attribute)

 	log_plugin_factory() (in module exopy.app.log.manifest)

 	logger (exopy.app.log.tools.StreamToLogRedirector attribute)

 	logger() (in module exopy.testing.fixtures)

 	LogicTasks (class in exopy.tasks.tasks.logic.declarations)

 	LogManifest (class in exopy.app.log.manifest)

 	LogModel (class in exopy.app.log.tools)

 	LogPlugin (class in exopy.app.log.plugin)

 	LogTask (class in exopy.tasks.tasks.util.log_task)

 	LogView (class in exopy.tasks.tasks.util.views.log_view)

 	loop (exopy.tasks.configs.base_config_views.PyConfigView attribute)

 	loopable (exopy.tasks.tasks.base_tasks.SimpleTask attribute)

 	LoopConfigView (class in exopy.tasks.configs.loop_config_view)

 	LoopException

 	LoopTask (class in exopy.tasks.tasks.logic.loop_task)

 	LoopTaskConfig (class in exopy.tasks.configs.loop_config)

 	LoopView (class in exopy.tasks.tasks.logic.views.loop_view)

M

 	
 	make_extension_validator() (in module exopy.utils.plugin_tools)

 	make_handler() (in module exopy.utils.plugin_tools)

 	make_parallel() (in module exopy.tasks.tasks.decorators)

 	make_selected_instrument_tooltip (exopy.tasks.tasks.instr_view.InstrTaskView attribute)

 	make_stoppable() (in module exopy.tasks.tasks.decorators)

 	make_view (exopy.measurement.workspace.tools_edition.ToolsEditor attribute)

 	make_view() (exopy.measurement.base_tool.BaseToolDeclaration method)

 	(in module exopy.tasks.tasks.logic.views.loop_view)

 	make_wait() (in module exopy.tasks.tasks.decorators)

 	manager (exopy.tasks.configs.base_configs.BaseTaskConfig attribute)

 	(exopy.tasks.widgets.browsing.TaskSelector attribute)

 	(exopy.tasks.widgets.building.BuilderView attribute)

 	(exopy.tasks.widgets.building.TemplateSelector attribute)

 	(exopy.tasks.widgets.saving.TemplateSaverDialog attribute)

 	(exopy.tasks.widgets.saving.TemplateSaverModel attribute)

 	manager_plugin_factory() (in module exopy.instruments.manifest)

 	(in module exopy.tasks.manifest)

 	mandatory_tools (exopy.measurement.workspace.tools_edition.ToolsEditor attribute)

 	manufacturer (exopy.instruments.drivers.driver_decl.Driver attribute)

 	(exopy.instruments.drivers.driver_decl.Drivers attribute)

 	(exopy.instruments.infos.InstrumentModelInfos attribute)

 	manufacturer_id (exopy.instruments.connections.visa_connections.VisaUSB attribute)

 	ManufacturerAlias (class in exopy.instruments.manufacturer_aliases)

 	ManufacturerInfos (class in exopy.instruments.infos)

 	manufacturers (exopy.instruments.infos.ManufacturersHolder attribute)

 	ManufacturersHolder (class in exopy.instruments.infos)

 	mapping (exopy.utils.widgets.dict_tree_view.DictTreeView attribute)

 	matching_connections() (in module exopy.instruments.widgets.profile_selection)

 	matching_settings() (in module exopy.instruments.widgets.profile_selection)

 	meas_log_handler (exopy.measurement.engines.process_engine.subprocess.TaskProcess attribute)

 	MeasEditionView (class in exopy.measurement.workspace.measurement_edition)

 	MeasureContent (class in exopy.measurement.workspace.content)

 	MeasureEditorDialog (class in exopy.measurement.workspace.measurement_edition)

 	MeasureManifest (class in exopy.measurement.manifest)

 	Measurement (class in exopy.measurement.measurement)

 	measurement (exopy.measurement.base_tool.BaseMeasureTool attribute)

 	(exopy.measurement.measurement.MeasurementDependencies attribute)

 	(exopy.measurement.workspace.measurement_edition.MeasEditionView attribute)

 	(exopy.measurement.workspace.measurement_edition.MeasureEditorDialog attribute)

 	(exopy.measurement.workspace.measurement_edition.MeasurementEditorDockItem attribute)

 	(exopy.measurement.workspace.monitors_window.MonitorsWindow attribute)

 	(exopy.measurement.workspace.tools_edition.ToolsEditor attribute)

 	(exopy.measurement.workspace.tools_edition.ToolsEditorDockItem attribute)

 	(exopy.measurement.workspace.tools_edition.ToolSelector attribute)

 	measurement() (in module exopy.measurement.base_tool)

 	(in module exopy.testing.measurement.fixtures)

 	measurement_force_enqueued (exopy.testing.measurement.dummies.DummyEngine attribute)

 	measurement_name (exopy.measurement.workspace.manifest.SaveConfirm attribute)

 	measurement_plugin() (in module exopy.measurement.measurement)

 	measurement_plugin_factory() (in module exopy.measurement.manifest)

 	measurement_workbench() (in module exopy.testing.measurement.fixtures)

 	MeasurementContainer (class in exopy.measurement.container)

 	MeasurementDependencies (class in exopy.measurement.measurement)

 	MeasurementEditorDockItem (class in exopy.measurement.workspace.measurement_edition)

 	MeasurementPlugin (class in exopy.measurement.plugin)

 	MeasurementProcessor (class in exopy.measurement.processor)

 	measurements (exopy.measurement.container.MeasurementContainer attribute)

 	MeasurementSpace (class in exopy.measurement.workspace.workspace)

 	MeasurementSpaceMenu (class in exopy.measurement.workspace.manifest)

 	MeasurementTracker (class in exopy.measurement.workspace.measurement_tracking)

 	MeasureSpy (class in exopy.measurement.engines.utils)

 	MeasureTestManifest (class in exopy.testing.measurement.contributions)

 	MeasView (class in exopy.measurement.workspace.measurement_execution)

 	member_from_pref() (in module exopy.utils.atom_util)

 	member_to_pref() (in module exopy.utils.atom_util)

 	message (exopy.measurement.monitors.text_monitor.rules.base_views.RuleIdValidator attribute)

 	(exopy.measurement.monitors.text_monitor.rules.std_views.SuffixesValidator attribute)

 	(exopy.tasks.tasks.util.log_task.LogTask attribute)

 	meta (exopy.tasks.tasks.database.DatabaseNode attribute)

 	meta_key (exopy.tasks.filters.GroupTaskFilter attribute)

 	(exopy.tasks.filters.MetadataTaskFilter attribute)

 	meta_value (exopy.tasks.filters.GroupTaskFilter attribute)

 	(exopy.tasks.filters.MetadataTaskFilter attribute)

 	metadata (exopy.tasks.declarations.Task attribute)

 	(exopy.tasks.infos.TaskInfos attribute)

 	MetadataTaskFilter (class in exopy.tasks.filters)

 	MIME_TYPE (exopy.utils.widgets.qt_clipboard.PyMimeData attribute)

 	mode (exopy.utils.widgets.qt_tree_menu.NewAction attribute), [1]

 	model (exopy.instruments.drivers.driver_decl.Driver attribute)

 	(exopy.instruments.infos.InstrumentModelInfos attribute)

 	(exopy.instruments.infos.ProfileInfos attribute)

 	(exopy.instruments.widgets.instrument_selection.ModelSelectionWidget attribute)

 	(exopy.instruments.widgets.instrument_selection.ModelView attribute)

 	(exopy.measurement.engines.process_engine.engine_declaration.SubprocessLogPanel attribute)

 	(exopy.measurement.workspace.measurement_execution.MeasView attribute)

 	(exopy.utils.widgets.dict_editor.FieldFieldCompleterEditor attribute)

 	(exopy.utils.widgets.dict_editor.FieldFieldEditor attribute)

 	(exopy.utils.widgets.list_editor.PopupListMenu attribute)

 	model_code (exopy.instruments.connections.visa_connections.VisaUSB attribute)

 	model_infos (exopy.instruments.widgets.profile_edition.ConnectionCreationDialog attribute)

 	(exopy.instruments.widgets.profile_edition.SettingsCreationDialog attribute)

 	ModelSelectionDialog (class in exopy.instruments.widgets.instrument_selection)

 	ModelSelectionWidget (class in exopy.instruments.widgets.instrument_selection)

 	ModelView (class in exopy.instruments.widgets.instrument_selection)

 	modify_access_exception() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	
 module

 	exopy.app.app_extensions

 	exopy.app.app_manifest

 	exopy.app.app_plugin

 	exopy.app.dependencies.dependencies

 	exopy.app.dependencies.manifest

 	exopy.app.dependencies.plugin

 	exopy.app.errors.errors

 	exopy.app.errors.manifest

 	exopy.app.errors.plugin

 	exopy.app.errors.widgets

 	exopy.app.log.manifest

 	exopy.app.log.plugin

 	exopy.app.log.tools

 	exopy.app.packages.manifest

 	exopy.app.packages.plugin

 	exopy.app.preferences.manifest

 	exopy.app.preferences.plugin

 	exopy.app.preferences.preferences

 	exopy.app.states.manifest

 	exopy.app.states.plugin

 	exopy.app.states.state

 	exopy.instruments.connections.base_connection

 	exopy.instruments.connections.visa_connections

 	exopy.instruments.drivers.driver_decl

 	exopy.instruments.infos

 	exopy.instruments.manifest

 	exopy.instruments.manufacturer_aliases

 	exopy.instruments.plugin

 	exopy.instruments.settings.base_settings

 	exopy.instruments.starters.base_starter

 	exopy.instruments.starters.exceptions

 	exopy.instruments.user

 	exopy.instruments.widgets.browsing

 	exopy.instruments.widgets.instrument_selection

 	exopy.instruments.widgets.profile_edition

 	exopy.instruments.widgets.profile_selection

 	exopy.measurement.base_tool

 	exopy.measurement.container

 	exopy.measurement.editors.base_editor

 	exopy.measurement.editors.database_access_editor.editor

 	exopy.measurement.editors.database_access_editor.editor_model

 	exopy.measurement.editors.execution_editor.editor

 	exopy.measurement.editors.execution_editor.editor_model

 	exopy.measurement.editors.standard_editor

 	exopy.measurement.engines.base_engine

 	exopy.measurement.engines.process_engine.engine

 	exopy.measurement.engines.process_engine.engine_declaration

 	exopy.measurement.engines.process_engine.subprocess

 	exopy.measurement.engines.selection

 	exopy.measurement.engines.utils

 	exopy.measurement.hooks.base_hooks

 	exopy.measurement.hooks.internal_checks

 	exopy.measurement.manifest

 	exopy.measurement.measurement

 	exopy.measurement.monitors.base_monitor

 	exopy.measurement.monitors.text_monitor.custom_entry_edition

 	exopy.measurement.monitors.text_monitor.entry

 	exopy.measurement.monitors.text_monitor.manifest

 	exopy.measurement.monitors.text_monitor.monitor

 	exopy.measurement.monitors.text_monitor.monitor_views

 	exopy.measurement.monitors.text_monitor.plugin

 	exopy.measurement.monitors.text_monitor.rules.base

 	exopy.measurement.monitors.text_monitor.rules.base_views

 	exopy.measurement.monitors.text_monitor.rules.edition_views

 	exopy.measurement.monitors.text_monitor.rules.infos

 	exopy.measurement.monitors.text_monitor.rules.std_rules

 	exopy.measurement.monitors.text_monitor.rules.std_views

 	exopy.measurement.plugin

 	exopy.measurement.processor

 	exopy.measurement.workspace.checks_display

 	exopy.measurement.workspace.content

 	exopy.measurement.workspace.manifest

 	exopy.measurement.workspace.measurement_edition

 	exopy.measurement.workspace.measurement_execution

 	exopy.measurement.workspace.measurement_tracking

 	exopy.measurement.workspace.monitors_window

 	exopy.measurement.workspace.tools_edition

 	exopy.measurement.workspace.workspace

 	exopy.tasks.configs.base_config_views

 	exopy.tasks.configs.base_configs

 	exopy.tasks.configs.loop_config

 	exopy.tasks.configs.loop_config_view

 	exopy.tasks.declarations

 	exopy.tasks.filters

 	exopy.tasks.infos

 	exopy.tasks.manifest

 	exopy.tasks.plugin

 	exopy.tasks.tasks.base_tasks

 	exopy.tasks.tasks.base_views

 	exopy.tasks.tasks.database

 	exopy.tasks.tasks.decorators

 	exopy.tasks.tasks.instr_task

 	exopy.tasks.tasks.instr_view

 	exopy.tasks.tasks.logic.conditional_task

 	exopy.tasks.tasks.logic.declarations

 	exopy.tasks.tasks.logic.loop_exceptions

 	exopy.tasks.tasks.logic.loop_exceptions_tasks

 	exopy.tasks.tasks.logic.loop_iterable_interface

 	exopy.tasks.tasks.logic.loop_linspace_interface

 	exopy.tasks.tasks.logic.loop_task

 	exopy.tasks.tasks.logic.views.conditional_view

 	exopy.tasks.tasks.logic.views.loop_exceptions_views

 	exopy.tasks.tasks.logic.views.loop_iterable_view

 	exopy.tasks.tasks.logic.views.loop_linspace_view

 	exopy.tasks.tasks.logic.views.loop_view

 	exopy.tasks.tasks.logic.views.while_view

 	exopy.tasks.tasks.logic.while_task

 	exopy.tasks.tasks.shared_resources

 	exopy.tasks.tasks.string_evaluation

 	exopy.tasks.tasks.task_editor

 	exopy.tasks.tasks.task_interface

 	exopy.tasks.tasks.util.declarations

 	exopy.tasks.tasks.util.definition_task

 	exopy.tasks.tasks.util.formula_task

 	exopy.tasks.tasks.util.log_task

 	exopy.tasks.tasks.util.sleep_task

 	exopy.tasks.tasks.util.views.definition_view

 	exopy.tasks.tasks.util.views.formula_view

 	exopy.tasks.tasks.util.views.log_view

 	exopy.tasks.tasks.util.views.sleep_view

 	exopy.tasks.tasks.validators

 	exopy.tasks.utils.building

 	exopy.tasks.utils.saving

 	exopy.tasks.utils.templates

 	exopy.tasks.widgets.browsing

 	exopy.tasks.widgets.building

 	exopy.tasks.widgets.saving

 	exopy.testing.fixtures

 	exopy.testing.instruments.fixtures

 	exopy.testing.measurement.contributions

 	exopy.testing.measurement.dummies

 	exopy.testing.measurement.fixtures

 	exopy.testing.measurement.monitors.text_monitor.fixtures

 	exopy.testing.measurement.workspace.fixtures

 	exopy.testing.tasks.fixtures

 	exopy.testing.tasks.util

 	exopy.testing.util

 	exopy.testing.windows

 	exopy.utils.atom_util

 	exopy.utils.configobj_ops

 	exopy.utils.container_change

 	exopy.utils.declarator

 	exopy.utils.enaml_destroy_hook

 	exopy.utils.flags

 	exopy.utils.mapping_utils

 	exopy.utils.plugin_tools

 	exopy.utils.priority_heap

 	exopy.utils.transformers

 	exopy.utils.watchdog

 	exopy.utils.widgets.dict_editor

 	exopy.utils.widgets.dict_tree_view

 	exopy.utils.widgets.list_editor

 	exopy.utils.widgets.qt_autoscroll_html

 	exopy.utils.widgets.qt_clipboard

 	exopy.utils.widgets.qt_completers

 	exopy.utils.widgets.qt_list_str_widget

 	exopy.utils.widgets.qt_tree_menu

 	exopy.utils.widgets.qt_tree_widget

 	exopy.utils.widgets.tree_nodes

 	exopy.version

 	
 	Monitor (class in exopy.measurement.monitors.base_monitor)

 	monitor (exopy.measurement.monitors.base_monitor.BaseMonitorItem attribute)

 	(exopy.measurement.monitors.text_monitor.custom_entry_edition.EntryDialog attribute)

 	(exopy.measurement.monitors.text_monitor.monitor_views.TextMonitorEdit attribute)

 	(exopy.measurement.monitors.text_monitor.rules.edition_views.EditRulesView attribute)

 	MONITOR_FAIL_WIDGET (exopy.testing.measurement.contributions.Flags attribute)

 	monitored_entries (exopy.measurement.monitors.base_monitor.BaseMonitor attribute)

 	(exopy.testing.measurement.dummies.DummyMonitor attribute)

 	MonitoredEntry (class in exopy.measurement.monitors.text_monitor.entry)

 	monitors (exopy.measurement.measurement.Measurement attribute)

 	(exopy.measurement.plugin.MeasurementPlugin attribute)

 	monitors_window (exopy.measurement.processor.MeasurementProcessor attribute)

 	MonitorsWindow (class in exopy.measurement.workspace.monitors_window)

 	MonitorTestItem (class in exopy.testing.measurement.contributions)

 	MoreVisibleLabel (class in exopy.measurement.workspace.manifest)

 	move (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	move() (exopy.measurement.container.MeasurementContainer method)

 	move_child() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	move_child_task() (exopy.tasks.tasks.base_tasks.ComplexTask method)

 	move_entries() (exopy.measurement.monitors.text_monitor.monitor.TextMonitor method)

 	move_measurement (exopy.measurement.workspace.measurement_execution.ExecutionDockItem attribute)

 	move_tool() (exopy.measurement.measurement.Measurement method)

 	moved (exopy.utils.container_change.ContainerChange attribute)

 	msg (exopy.app.errors.widgets.UnknownErrorWidget attribute)

 	(exopy.measurement.workspace.tools_edition.NonEditableTool attribute)

 	multiselect (exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

N

 	
 	name (exopy.instruments.infos.SeriesInfos attribute)

 	(exopy.measurement.editors.base_editor.BaseEditor attribute)

 	(exopy.measurement.measurement.Measurement attribute)

 	(exopy.measurement.monitors.text_monitor.entry.MonitoredEntry attribute)

 	(exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	(exopy.tasks.tasks.base_tasks.ComplexTask attribute)

 	(exopy.tasks.tasks.base_tasks.RootTask attribute)

 	(exopy.tasks.tasks.logic.loop_task.LoopTask attribute)

 	(exopy.utils.container_change.ContainerChange attribute)

 	(exopy.utils.widgets.dict_tree_view.Leaf attribute)

 	(exopy.utils.widgets.dict_tree_view.Node attribute)

 	(exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	name_and_desc (exopy.measurement.monitors.text_monitor.rules.base_views.BaseRuleView attribute)

 	name_field (exopy.tasks.configs.base_config_views.BaseConfigView attribute)

 	name_label (exopy.tasks.configs.base_config_views.BaseConfigView attribute)

 	new (exopy.instruments.connections.visa_connections.VisaConnection attribute)

 	(exopy.measurement.engines.process_engine.engine_declaration.ProcessEngine attribute)

 	new() (exopy.instruments.connections.base_connection.Connection method)

 	(exopy.instruments.settings.base_settings.Settings method)

 	(exopy.measurement.base_tool.BaseToolDeclaration method)

 	(exopy.measurement.editors.base_editor.Editor method)

 	(exopy.measurement.engines.base_engine.Engine method)

 	
 	new_entry_formatting (exopy.measurement.monitors.text_monitor.rules.std_rules.FormatRule attribute)

 	new_entry_suffix (exopy.measurement.monitors.text_monitor.rules.std_rules.FormatRule attribute)

 	new_measurement() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	(in module exopy.measurement.workspace.manifest)

 	NewAction (class in exopy.utils.widgets.qt_tree_menu)

 	Node (class in exopy.utils.widgets.dict_tree_view)

 	node (exopy.measurement.editors.database_access_editor.editor.NodeEditor attribute)

 	node_for (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	node_for_class (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	NodeEditor (class in exopy.measurement.editors.database_access_editor.editor)

 	NodeModel (class in exopy.measurement.editors.database_access_editor.editor_model)

 	nodes (exopy.measurement.editors.database_access_editor.editor_model.EditorModel attribute)

 	(exopy.utils.widgets.dict_tree_view.Node attribute)

 	(exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	nodes_notifier (exopy.tasks.tasks.database.TaskDatabase attribute)

 	NonEditableTool (class in exopy.measurement.workspace.tools_edition)

 	NOPICKLE_MIME_TYPE (exopy.utils.widgets.qt_clipboard.PyMimeData attribute)

 	normalize_name() (in module exopy.tasks.widgets.browsing)

 	notifier (exopy.tasks.tasks.database.TaskDatabase attribute)

O

 	
 	obj (exopy.utils.container_change.ContainerChange attribute)

 	ObjectDependentInfos (class in exopy.tasks.infos)

 	ObjectTracker (class in exopy.testing.util)

 	observed_database (exopy.measurement.engines.utils.MeasureSpy attribute)

 	observed_entries (exopy.measurement.engines.base_engine.ExecutionInfos attribute)

 	(exopy.measurement.engines.utils.MeasureSpy attribute)

 	on_created() (exopy.utils.watchdog.SystematicFileUpdater method)

 	on_deleted() (exopy.utils.watchdog.SystematicFileUpdater method)

 	on_focus_gained() (exopy.utils.widgets.qt_completers.QDelimitedCompleter method)

 	
 	on_moved() (exopy.utils.watchdog.SystematicFileUpdater method)

 	on_selection() (exopy.utils.widgets.qt_list_str_widget.QtListStrWidget method)

 	open_browser_dialog_handler() (in module exopy.instruments.manifest)

 	open_editor() (exopy.app.preferences.plugin.PrefPlugin method)

 	operations (exopy.tasks.tasks.task_editor.FoldableTaskEditor attribute)

 	(exopy.tasks.tasks.task_editor.TaskEditor attribute)

 	(exopy.utils.widgets.list_editor.PopupListMenu attribute)

 	ordered_dict_from_pref() (in module exopy.utils.atom_util)

 	ordered_dict_to_pref() (in module exopy.utils.atom_util)

P

 	
 	packages (exopy.app.packages.plugin.PackagesPlugin attribute)

 	packages_plugin_factory() (in module exopy.app.packages.manifest)

 	PackagesManifest (class in exopy.app.packages.manifest)

 	PackagesPlugin (class in exopy.app.packages.plugin)

 	padding (exopy.tasks.tasks.task_editor.TaskEditor attribute)

 	PageTestingWindow (class in exopy.testing.windows)

 	Pair (class in exopy.utils.widgets.dict_editor)

 	panel_name (exopy.measurement.engines.process_engine.engine_declaration.ProcessEngine attribute)

 	parallel (exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	(exopy.tasks.tasks.logic.loop_exceptions_tasks.BreakTask attribute)

 	(exopy.tasks.tasks.logic.loop_exceptions_tasks.ContinueTask attribute)

 	parent (exopy.tasks.infos.InterfaceInfos attribute)

 	(exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	(exopy.tasks.tasks.database.DatabaseNode attribute)

 	(exopy.tasks.tasks.task_interface.IInterface attribute)

 	(exopy.utils.widgets.dict_tree_view.Node attribute)

 	PasteAction (class in exopy.utils.widgets.qt_tree_menu)

 	path (exopy.app.preferences.manifest.AppDirSelectionDialog attribute)

 	(exopy.instruments.infos.ProfileInfos attribute)

 	(exopy.measurement.measurement.Measurement attribute)

 	(exopy.measurement.monitors.text_monitor.entry.MonitoredEntry attribute)

 	(exopy.measurement.plugin.MeasurementPlugin attribute)

 	(exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	(exopy.tasks.tasks.base_tasks.RootTask attribute)

 	(exopy.tasks.widgets.building.TemplateSelector attribute)

 	(exopy.utils.declarator.GroupDeclarator attribute)

 	pause() (exopy.measurement.engines.base_engine.BaseEngine method)

 	(exopy.measurement.engines.process_engine.engine.ProcessEngine method)

 	(exopy.measurement.hooks.base_hooks.BaseExecutionHook method)

 	(exopy.testing.measurement.dummies.DummyEngine method)

 	(exopy.testing.measurement.dummies.DummyHook method)

 	pause_current_measurement() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	pause_measurement() (exopy.measurement.processor.MeasurementProcessor method)

 	paused (exopy.measurement.hooks.base_hooks.BaseExecutionHook attribute)

 	(exopy.tasks.tasks.base_tasks.RootTask attribute)

 	paused_threads_counter (exopy.tasks.tasks.base_tasks.RootTask attribute)

 	perform() (exopy.measurement.engines.base_engine.BaseEngine method)

 	(exopy.measurement.engines.process_engine.engine.ProcessEngine method)

 	(exopy.tasks.tasks.base_tasks.BaseTask method)

 	(exopy.tasks.tasks.base_tasks.ComplexTask method)

 	(exopy.tasks.tasks.base_tasks.RootTask method)

 	(exopy.tasks.tasks.logic.conditional_task.ConditionalTask method)

 	(exopy.tasks.tasks.logic.loop_exceptions_tasks.BreakTask method)

 	(exopy.tasks.tasks.logic.loop_exceptions_tasks.ContinueTask method)

 	(exopy.tasks.tasks.logic.loop_iterable_interface.IterableLoopInterface method)

 	(exopy.tasks.tasks.logic.loop_linspace_interface.LinspaceLoopInterface method)

 	(exopy.tasks.tasks.logic.while_task.WhileTask method)

 	(exopy.tasks.tasks.task_interface.BaseInterface method)

 	(exopy.tasks.tasks.task_interface.InterfaceableMixin method)

 	(exopy.tasks.tasks.util.definition_task.DefinitionTask method)

 	(exopy.tasks.tasks.util.formula_task.FormulaTask method)

 	(exopy.tasks.tasks.util.log_task.LogTask method)

 	(exopy.tasks.tasks.util.sleep_task.SleepTask method)

 	(exopy.testing.measurement.dummies.DummyEngine method)

 	(exopy.testing.tasks.util.CheckTask method)

 	(exopy.testing.tasks.util.ExceptionTask method)

 	perform_ (exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	perform_called (exopy.testing.tasks.util.CheckTask attribute)

 	perform_loop() (exopy.tasks.tasks.logic.loop_task.LoopTask method)

 	perform_value (exopy.testing.tasks.util.CheckTask attribute)

 	pixmap_cache() (in module exopy.utils.widgets.qt_tree_widget)

 	plugin (exopy.instruments.infos.ManufacturersHolder attribute)

 	(exopy.instruments.infos.ProfileInfos attribute)

 	(exopy.instruments.widgets.browsing.BrowsingDialog attribute)

 	(exopy.instruments.widgets.instrument_selection.ModelSelectionDialog attribute)

 	(exopy.instruments.widgets.instrument_selection.ModelSelectionWidget attribute)

 	(exopy.instruments.widgets.profile_edition.ConnectionCreationDialog attribute)

 	(exopy.instruments.widgets.profile_edition.ConnectionValidationWindow attribute)

 	(exopy.instruments.widgets.profile_edition.ProfileEditionDialog attribute)

 	(exopy.instruments.widgets.profile_edition.ProfileEditionWidget attribute)

 	(exopy.instruments.widgets.profile_edition.SettingsCreationDialog attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionDialog attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionWidget attribute)

 	(exopy.measurement.engines.selection.EngineSelector attribute)

 	(exopy.measurement.measurement.Measurement attribute)

 	(exopy.measurement.monitors.text_monitor.rules.base_views.BaseRuleView attribute)

 	(exopy.measurement.monitors.text_monitor.rules.edition_views.CreateRuleDialog attribute)

 	(exopy.measurement.monitors.text_monitor.rules.edition_views.EditRulesView attribute)

 	(exopy.measurement.processor.MeasurementProcessor attribute)

 	(exopy.measurement.workspace.workspace.MeasurementSpace attribute)

 	
 	plugin() (in module exopy.measurement.processor)

 	plugin_factory() (in module exopy.measurement.monitors.text_monitor.manifest)

 	plugin_init_complete() (exopy.app.preferences.plugin.PrefPlugin method)

 	(in module exopy.app.preferences.manifest)

 	point (exopy.utils.plugin_tools.BaseCollector attribute)

 	policy (exopy.instruments.user.InstrUser attribute)

 	pool_model (exopy.measurement.editors.execution_editor.editor.ExecutionEditor attribute)

 	pools (exopy.measurement.editors.execution_editor.editor_model.ExecutionEditorModel attribute)

 	pop() (exopy.utils.priority_heap.PriorityHeap method)

 	populate_nodes (exopy.measurement.editors.database_access_editor.editor.NodeEditor attribute)

 	PopupListMenu (class in exopy.utils.widgets.list_editor)

 	port (exopy.instruments.connections.visa_connections.VisaTCPIP attribute)

 	post_hooks (exopy.measurement.measurement.Measurement attribute)

 	(exopy.measurement.plugin.MeasurementPlugin attribute)

 	post_set_infos (exopy.instruments.widgets.profile_selection.ProfileSelectionWidget attribute)

 	post_set_measurement (exopy.measurement.workspace.measurement_edition.MeasEditionView attribute)

 	PostExecutionHook (class in exopy.measurement.hooks.base_hooks)

 	pre_hooks (exopy.measurement.measurement.Measurement attribute)

 	(exopy.measurement.plugin.MeasurementPlugin attribute)

 	PreExecutionHook (class in exopy.measurement.hooks.base_hooks)

 	preference_plugin_factory() (in module exopy.app.preferences.manifest)

 	Preferences (class in exopy.app.preferences.preferences)

 	preferences (exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	preferences_from_members() (exopy.tasks.tasks.task_interface.InterfaceableInterfaceMixin method)

 	(exopy.utils.atom_util.HasPrefAtom method)

 	(exopy.utils.plugin_tools.HasPreferencesPlugin method)

 	(in module exopy.utils.atom_util)

 	PreferencesManifest (class in exopy.app.preferences.manifest)

 	PREFIX (in module exopy.tasks.tasks.base_tasks)

 	PrefPlugin (class in exopy.app.preferences.plugin)

 	prepare() (exopy.app.log.tools.QueueHandler method)

 	(exopy.tasks.tasks.base_tasks.BaseTask method)

 	(exopy.tasks.tasks.base_tasks.ComplexTask method)

 	(exopy.tasks.tasks.base_tasks.RootTask method)

 	(exopy.tasks.tasks.instr_task.InstrumentTask method)

 	(exopy.tasks.tasks.task_interface.BaseInterface method)

 	(exopy.tasks.tasks.task_interface.InterfaceableMixin method)

 	prepare_to_run() (exopy.tasks.tasks.database.TaskDatabase method)

 	primary_address (exopy.instruments.connections.visa_connections.VisaGPIB attribute)

 	priority (exopy.app.app_extensions.AppClosed attribute)

 	(exopy.app.app_extensions.AppStartup attribute)

 	(exopy.tasks.tasks.shared_resources.ResourceHolder attribute)

 	(exopy.tasks.tasks.shared_resources.ThreadPoolResource attribute)

 	PriorityHeap (class in exopy.utils.priority_heap)

 	process_and_sleep() (in module exopy.testing.fixtures)

 	process_app_events() (in module exopy.testing.util)

 	process_name (exopy.measurement.engines.process_engine.engine_declaration.ProcFilter attribute)

 	process_news() (exopy.measurement.monitors.base_monitor.BaseMonitor method)

 	(exopy.measurement.monitors.text_monitor.monitor.TextMonitor method)

 	(exopy.testing.measurement.dummies.DummyMonitor method)

 	process_single_measurement() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	ProcessEngine (class in exopy.measurement.engines.process_engine.engine)

 	(class in exopy.measurement.engines.process_engine.engine_declaration)

 	processor (exopy.measurement.plugin.MeasurementPlugin attribute)

 	ProcFilter (class in exopy.measurement.engines.process_engine.engine_declaration)

 	profile (exopy.instruments.widgets.profile_selection.ProfileSelectionDialog attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionWidget attribute)

 	PROFILE_ANALYSER (exopy.tasks.infos.InterfaceInfos attribute)

 	(exopy.tasks.infos.ObjectDependentInfos attribute)

 	(exopy.tasks.infos.TaskInfos attribute)

 	profile_infos (exopy.instruments.widgets.profile_edition.ConnectionValidationWindow attribute)

 	(exopy.instruments.widgets.profile_edition.ProfileEditionDialog attribute)

 	(exopy.instruments.widgets.profile_edition.ProfileEditionWidget attribute)

 	ProfileEditionDialog (class in exopy.instruments.widgets.profile_edition)

 	ProfileEditionWidget (class in exopy.instruments.widgets.profile_edition)

 	ProfileInfos (class in exopy.instruments.infos)

 	profiles (exopy.instruments.plugin.InstrumentManagerPlugin attribute)

 	ProfileSelectionDialog (class in exopy.instruments.widgets.profile_selection)

 	ProfileSelectionWidget (class in exopy.instruments.widgets.profile_selection)

 	progress (exopy.measurement.engines.base_engine.BaseEngine attribute)

 	push() (exopy.utils.priority_heap.PriorityHeap method)

 	PyConfigView (class in exopy.tasks.configs.base_config_views)

 	PyMimeData (class in exopy.utils.widgets.qt_clipboard)

 	PyTaskConfig (class in exopy.tasks.configs.base_configs)

 	pytest_addoption() (in module exopy.testing.fixtures)

 	pytest_configure() (in module exopy.testing.fixtures)

Q

 	
 	QCompletableTexEdit (class in exopy.utils.widgets.qt_completers)

 	QDelimitedCompleter (class in exopy.utils.widgets.qt_completers)

 	QtAutoscrollHtml (class in exopy.utils.widgets.qt_autoscroll_html)

 	QtLineCompleter (class in exopy.utils.widgets.qt_completers)

 	QtListStrWidget (class in exopy.utils.widgets.qt_list_str_widget)

 	
 	QtTextCompleter (class in exopy.utils.widgets.qt_completers)

 	QtTreeWidget (class in exopy.utils.widgets.qt_tree_widget)

 	queue (exopy.app.log.tools.QueueLoggerThread attribute)

 	(exopy.measurement.engines.utils.MeasureSpy attribute)

 	QueueHandler (class in exopy.app.log.tools)

 	QueueLoggerThread (class in exopy.app.log.tools)

R

 	
 	r (exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	(exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	(exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	rank (exopy.measurement.editors.base_editor.Editor attribute)

 	rc_lab (exopy.instruments.connections.visa_connections.BaseVisaConnection attribute)

 	rc_val (exopy.instruments.connections.visa_connections.BaseVisaConnection attribute)

 	react_to_selection() (exopy.measurement.editors.base_editor.BaseEditor method)

 	(exopy.measurement.engines.base_engine.Engine method)

 	react_to_unselection() (exopy.measurement.editors.base_editor.BaseEditor method)

 	(exopy.measurement.engines.base_engine.Engine method)

 	read_only (exopy.instruments.connections.base_connection.BaseConnection attribute)

 	(exopy.instruments.settings.base_settings.BaseSettings attribute)

 	(exopy.instruments.widgets.profile_edition.ProfileEditionWidget attribute)

 	ready (exopy.tasks.configs.base_configs.BaseTaskConfig attribute)

 	(exopy.tasks.widgets.saving.TemplateSaverModel attribute)

 	received_news (exopy.testing.measurement.dummies.DummyMonitor attribute)

 	recursive_update() (in module exopy.utils.mapping_utils)

 	reenqueue_measurement() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	refresh (exopy.measurement.editors.database_access_editor.editor.NodeEditor attribute)

 	(exopy.measurement.editors.execution_editor.editor.ComplexTaskExecutionEditor attribute)

 	(exopy.measurement.editors.execution_editor.editor.SimpleTaskExecutionEditor attribute)

 	(exopy.tasks.tasks.base_views.BaseTaskView attribute)

 	(exopy.tasks.tasks.base_views.ComplexTaskView attribute)

 	(exopy.tasks.tasks.base_views.RootTaskView attribute)

 	(exopy.tasks.tasks.task_editor.FoldableTaskEditor attribute)

 	refresh() (exopy.tasks.tasks.task_editor.TaskEditor method)

 	refresh_items() (exopy.utils.widgets.qt_list_str_widget.QtListStrWidget method)

 	refresh_method (exopy.utils.widgets.dict_editor.Pair attribute)

 	refresh_monitored_entries() (exopy.measurement.monitors.base_monitor.BaseMonitor method)

 	(exopy.measurement.monitors.text_monitor.monitor.TextMonitor method)

 	(exopy.testing.measurement.dummies.DummyMonitor method)

 	register() (exopy.instruments.drivers.driver_decl.Driver method)

 	(exopy.measurement.monitors.text_monitor.rules.base.RuleType method)

 	(exopy.tasks.declarations.Interface method)

 	(exopy.tasks.declarations.Task method)

 	(exopy.tasks.declarations.TaskConfig method)

 	(exopy.utils.declarator.Declarator method)

 	(exopy.utils.declarator.GroupDeclarator method)

 	register_in_database() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	(exopy.tasks.tasks.base_tasks.ComplexTask method)

 	(exopy.tasks.tasks.base_tasks.RootTask method)

 	register_preferences() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	(exopy.tasks.tasks.base_tasks.ComplexTask method)

 	(exopy.tasks.tasks.base_tasks.SimpleTask method)

 	(exopy.tasks.tasks.task_interface.InterfaceableTaskMixin method)

 	reject_if_equal (exopy.measurement.engines.process_engine.engine_declaration.ProcFilter attribute)

 	RejectRule (class in exopy.measurement.monitors.text_monitor.rules.std_rules)

 	RejectRuleView (class in exopy.measurement.monitors.text_monitor.rules.std_views)

 	release() (exopy.app.dependencies.dependencies.RuntimeDependencyCollector method)

 	(exopy.tasks.tasks.shared_resources.FilesResource method)

 	(exopy.tasks.tasks.shared_resources.InstrsResource method)

 	(exopy.tasks.tasks.shared_resources.ResourceHolder method)

 	(exopy.tasks.tasks.shared_resources.ThreadPoolResource method)

 	release_profiles() (exopy.instruments.plugin.InstrumentManagerPlugin method)

 	(exopy.instruments.user.InstrUser method)

 	release_resources() (exopy.tasks.tasks.base_tasks.RootTask method)

 	release_runtimes() (exopy.app.dependencies.plugin.DependenciesPlugin method)

 	(exopy.measurement.measurement.MeasurementDependencies method)

 	remove() (exopy.measurement.container.MeasurementContainer method)

 	(exopy.utils.priority_heap.PriorityHeap method)

 	remove_access_exception() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	(exopy.tasks.tasks.database.TaskDatabase method)

 	remove_child_task() (exopy.tasks.tasks.base_tasks.ComplexTask method)

 	remove_entries() (exopy.measurement.monitors.text_monitor.monitor.TextMonitor method)

 	remove_filter() (exopy.app.log.plugin.LogPlugin method)

 	remove_from_database() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	remove_handler() (exopy.app.log.plugin.LogPlugin method)

 	remove_measurement (exopy.measurement.workspace.measurement_execution.ExecutionDockItem attribute)

 	remove_node() (exopy.measurement.editors.database_access_editor.editor_model.NodeModel method)

 	remove_processed_measurements() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	remove_tool() (exopy.measurement.measurement.Measurement method)

 	removed (exopy.utils.container_change.ContainerChange attribute)

 	rename (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	rename_me (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	rename_node() (exopy.tasks.tasks.database.TaskDatabase method)

 	rename_values() (exopy.tasks.tasks.database.TaskDatabase method)

 	RenameAction (class in exopy.utils.widgets.qt_tree_menu)

 	
 	RenameSettingsPopup (class in exopy.instruments.widgets.profile_edition)

 	report() (exopy.app.errors.errors.ErrorHandler method)

 	(exopy.app.errors.plugin.ErrorsPlugin method)

 	reset() (exopy.instruments.starters.base_starter.BaseStarter method)

 	(exopy.measurement.measurement.MeasurementDependencies method)

 	(exopy.tasks.tasks.shared_resources.InstrsResource method)

 	(exopy.tasks.tasks.shared_resources.ResourceHolder method)

 	resource_class (exopy.instruments.connections.visa_connections.BaseVisaConnection attribute)

 	resource_name (exopy.instruments.connections.visa_connections.VisaRaw attribute)

 	ResourceHolder (class in exopy.tasks.tasks.shared_resources)

 	resources (exopy.tasks.tasks.base_tasks.RootTask attribute)

 	resume() (exopy.measurement.engines.base_engine.BaseEngine method)

 	(exopy.measurement.engines.process_engine.engine.ProcessEngine method)

 	(exopy.measurement.hooks.base_hooks.BaseExecutionHook method)

 	(exopy.testing.measurement.dummies.DummyEngine method)

 	(exopy.testing.measurement.dummies.DummyHook method)

 	resume_current_measurement() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	resume_measurement() (exopy.measurement.processor.MeasurementProcessor method)

 	resumed (exopy.measurement.hooks.base_hooks.BaseExecutionHook attribute)

 	(exopy.tasks.tasks.base_tasks.RootTask attribute)

 	root (exopy.measurement.editors.database_access_editor.editor.NodeEditor attribute)

 	(exopy.measurement.editors.database_access_editor.editor_model.EditorModel attribute)

 	(exopy.measurement.editors.execution_editor.editor.ComplexTaskExecutionEditor attribute)

 	(exopy.measurement.editors.execution_editor.editor.SimpleTaskExecutionEditor attribute)

 	(exopy.measurement.editors.execution_editor.editor_model.ExecutionEditorModel attribute)

 	(exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	(exopy.tasks.tasks.base_tasks.ComplexTask attribute)

 	(exopy.tasks.tasks.base_views.BaseTaskView attribute)

 	(exopy.tasks.tasks.logic.views.loop_iterable_view.IterableLoopField attribute)

 	(exopy.tasks.tasks.logic.views.loop_iterable_view.IterableLoopLabel attribute)

 	(exopy.tasks.tasks.logic.views.loop_linspace_view.LinspaceLoopView attribute)

 	(exopy.tasks.tasks.task_editor.FoldableTaskEditor attribute)

 	(exopy.tasks.tasks.task_editor.TaskEditor attribute)

 	root_node (exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	root_task (exopy.measurement.measurement.Measurement attribute)

 	root_view (exopy.measurement.editors.standard_editor.StandardEditor attribute)

 	root_view() (in module exopy.testing.tasks.fixtures)

 	RootTask (class in exopy.tasks.tasks.base_tasks)

 	RootTaskView (class in exopy.tasks.tasks.base_views)

 	rule (exopy.measurement.monitors.text_monitor.rules.base.RuleType attribute)

 	(exopy.measurement.monitors.text_monitor.rules.base_views.BaseRuleView attribute)

 	(exopy.measurement.monitors.text_monitor.rules.base_views.DescriptionEditionPopup attribute)

 	(exopy.measurement.monitors.text_monitor.rules.edition_views.CreateRuleDialog attribute)

 	rule_type (exopy.measurement.monitors.text_monitor.rules.base.RuleConfig attribute)

 	rule_types (exopy.measurement.monitors.text_monitor.plugin.TextMonitorPlugin attribute)

 	RuleConfig (class in exopy.measurement.monitors.text_monitor.rules.base)

 	RuleIdValidator (class in exopy.measurement.monitors.text_monitor.rules.base_views)

 	RuleInfos (class in exopy.measurement.monitors.text_monitor.rules.infos)

 	Rules (class in exopy.measurement.monitors.text_monitor.rules.base)

 	rules (exopy.measurement.monitors.text_monitor.monitor.TextMonitor attribute)

 	(exopy.measurement.monitors.text_monitor.plugin.TextMonitorPlugin attribute)

 	RuleType (class in exopy.measurement.monitors.text_monitor.rules.base)

 	run() (exopy.app.app_extensions.AppStartup method)

 	(exopy.app.log.tools.QueueLoggerThread method)

 	(exopy.measurement.engines.process_engine.subprocess.TaskProcess method)

 	(exopy.measurement.engines.utils.ThreadMeasureMonitor method)

 	(exopy.measurement.hooks.base_hooks.BaseExecutionHook method)

 	(exopy.measurement.workspace.measurement_tracking.MeasurementTracker method)

 	(exopy.testing.measurement.dummies.DummyHook method)

 	run_app_cleanup() (exopy.app.app_plugin.AppPlugin method)

 	run_app_startup() (exopy.app.app_plugin.AppPlugin method)

 	run_checks() (exopy.measurement.measurement.Measurement method)

 	run_deps_analysers (exopy.app.dependencies.plugin.DependenciesPlugin attribute)

 	run_deps_collectors (exopy.app.dependencies.plugin.DependenciesPlugin attribute)

 	run_time (exopy.tasks.tasks.base_tasks.RootTask attribute)

 	running (exopy.tasks.tasks.database.TaskDatabase attribute)

 	(exopy.testing.measurement.dummies.DummyMonitor attribute)

 	running_measurement (exopy.measurement.processor.MeasurementProcessor attribute)

 	RUNTIME1_FAIL_ANALYSE (exopy.testing.measurement.contributions.Flags attribute)

 	RUNTIME1_FAIL_COLLECT (exopy.testing.measurement.contributions.Flags attribute)

 	RUNTIME1_UNAVAILABLE (exopy.testing.measurement.contributions.Flags attribute)

 	RUNTIME2_FAIL_ANALYSE (exopy.testing.measurement.contributions.Flags attribute)

 	RUNTIME2_FAIL_COLLECT (exopy.testing.measurement.contributions.Flags attribute)

 	RUNTIME2_UNAVAILABLE (exopy.testing.measurement.contributions.Flags attribute)

 	runtime_deps (exopy.measurement.engines.base_engine.ExecutionInfos attribute)

 	RuntimeContainer (class in exopy.app.dependencies.plugin)

 	RuntimeDependencyAnalyser (class in exopy.app.dependencies.dependencies)

 	RuntimeDependencyCollector (class in exopy.app.dependencies.dependencies)

S

 	
 	safe_access() (exopy.tasks.tasks.shared_resources.SharedDict method)

 	safe_eval() (in module exopy.tasks.tasks.string_evaluation)

 	save() (exopy.measurement.measurement.Measurement method)

 	save_measurement() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	(in module exopy.measurement.workspace.manifest)

 	save_measurement_as() (in module exopy.measurement.workspace.manifest)

 	save_preferences() (exopy.app.preferences.plugin.PrefPlugin method)

 	(in module exopy.app.preferences.manifest)

 	save_rule() (exopy.measurement.monitors.text_monitor.plugin.TextMonitorPlugin method)

 	save_task() (in module exopy.tasks.utils.saving)

 	save_template() (in module exopy.tasks.utils.templates)

 	SaveAction (class in exopy.measurement.workspace.measurement_edition)

 	SaveConfirm (class in exopy.measurement.workspace.manifest)

 	saving_method (exopy.app.preferences.preferences.Preferences attribute)

 	schedule_and_block() (in module exopy.measurement.processor)

 	ScheduledClosing (class in exopy.testing.util)

 	scrollable (exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	secondary_address (exopy.instruments.connections.visa_connections.VisaGPIB attribute)

 	select() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	select_instrument_handler() (in module exopy.instruments.manifest)

 	select_interface (exopy.tasks.tasks.instr_view.InstrTaskView attribute)

 	selected (exopy.app.errors.widgets.BasicErrorsDisplay attribute)

 	(exopy.app.errors.widgets.HierarchicalErrorsDisplay attribute)

 	(exopy.measurement.monitors.text_monitor.monitor_views.TextMonitorEdit attribute)

 	selected_decl (exopy.measurement.engines.selection.EngineSelector attribute)

 	(exopy.measurement.workspace.tools_edition.ToolSelector attribute)

 	selected_engine (exopy.measurement.plugin.MeasurementPlugin attribute)

 	selected_filter (exopy.tasks.widgets.browsing.TaskSelector attribute)

 	selected_id (exopy.measurement.workspace.tools_edition.ToolsEditor attribute)

 	selected_instrument (exopy.tasks.tasks.instr_task.InstrumentTask attribute)

 	selected_item (exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	(exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	selected_items (exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	selected_task (exopy.measurement.editors.base_editor.BaseEditor attribute)

 	(exopy.measurement.workspace.measurement_edition.MeasEditionView attribute)

 	(exopy.tasks.widgets.browsing.TaskSelector attribute)

 	selector (exopy.tasks.widgets.building.BuilderView attribute)

 	(exopy.tasks.widgets.building.TemplateSelector attribute)

 	serial_number (exopy.instruments.connections.visa_connections.VisaUSB attribute)

 	serie (exopy.instruments.drivers.driver_decl.Driver attribute)

 	(exopy.instruments.drivers.driver_decl.Drivers attribute)

 	(exopy.instruments.infos.InstrumentModelInfos attribute)

 	SeriesInfos (class in exopy.instruments.infos)

 	set() (exopy.utils.flags.BitFlag method)

 	set_formatter() (exopy.app.log.plugin.LogPlugin method)

 	set_layout (exopy.testing.windows.DockItemTestingWindow attribute)

 	set_preferences() (in module exopy.testing.util)

 	set_selected_measurement() (exopy.measurement.workspace.measurement_tracking.MeasurementTracker method)

 	set_state() (exopy.measurement.base_tool.BaseMeasureTool method)

 	(exopy.measurement.monitors.text_monitor.monitor.TextMonitor method)

 	set_value() (exopy.tasks.tasks.database.TaskDatabase method)

 	set_view_for (exopy.measurement.editors.database_access_editor.editor.DatabaseAccessEditor attribute)

 	(exopy.measurement.editors.execution_editor.editor.ExecutionEditor attribute)

 	(exopy.measurement.editors.standard_editor.StandardEditor attribute)

 	Settings (class in exopy.instruments.settings.base_settings)

 	settings (exopy.instruments.drivers.driver_decl.Driver attribute)

 	(exopy.instruments.drivers.driver_decl.Drivers attribute)

 	(exopy.instruments.infos.DriverInfos attribute)

 	(exopy.instruments.infos.InstrumentModelInfos attribute)

 	(exopy.instruments.infos.ProfileInfos attribute)

 	(exopy.instruments.plugin.InstrumentManagerPlugin attribute)

 	(exopy.instruments.widgets.profile_edition.ConnectionValidationWindow attribute)

 	(exopy.instruments.widgets.profile_edition.ProfileEditionWidget attribute)

 	(exopy.instruments.widgets.profile_edition.RenameSettingsPopup attribute)

 	(exopy.instruments.widgets.profile_edition.SettingsCreationDialog attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionDialog attribute)

 	(exopy.instruments.widgets.profile_selection.ProfileSelectionWidget attribute)

 	SettingsCreationDialog (class in exopy.instruments.widgets.profile_edition)

 	SetValidator (class in exopy.instruments.widgets.profile_edition)

 	SharedCounter (class in exopy.tasks.tasks.shared_resources)

 	SharedDict (class in exopy.tasks.tasks.shared_resources)

 	should_pause (exopy.tasks.tasks.base_tasks.RootTask attribute)

 	(exopy.testing.measurement.dummies.DummyEngine attribute)

 	(exopy.testing.measurement.dummies.DummyHook attribute)

 	(exopy.testing.measurement.dummies.DummyPostHook attribute)

 	(exopy.testing.measurement.dummies.DummyPreHook attribute)

 	should_profile (exopy.tasks.tasks.base_tasks.RootTask attribute)

 	should_resume (exopy.testing.measurement.dummies.DummyEngine attribute)

 	(exopy.testing.measurement.dummies.DummyHook attribute)

 	should_stop (exopy.tasks.tasks.base_tasks.RootTask attribute)

 	should_test() (exopy.tasks.tasks.validators.Feval method)

 	(exopy.tasks.tasks.validators.SkipEmpty method)

 	(exopy.tasks.tasks.validators.SkipLoop method)

 	show_and_close_widget() (in module exopy.testing.util)

 	show_children (exopy.measurement.editors.database_access_editor.editor.NodeEditor attribute)

 	(exopy.measurement.editors.execution_editor.editor.ComplexTaskExecutionEditor attribute)

 	show_editor (exopy.tasks.tasks.task_editor.FoldableTaskEditor attribute)

 	show_icons (exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	show_result (exopy.tasks.widgets.saving.TemplateSaverDialog attribute)

 	show_widget() (in module exopy.testing.util)

 	shutdown() (exopy.measurement.engines.base_engine.BaseEngine method)

 	(exopy.measurement.engines.process_engine.engine.ProcessEngine method)

 	(exopy.testing.measurement.dummies.DummyEngine method)

 	signal() (exopy.app.errors.plugin.ErrorsPlugin method)

 	signal_error_raise() (in module exopy.testing.util)

 	
 	signal_resumed (exopy.testing.measurement.dummies.DummyEngine attribute)

 	(exopy.testing.measurement.dummies.DummyHook attribute)

 	signal_resuming (exopy.testing.measurement.dummies.DummyEngine attribute)

 	(exopy.testing.measurement.dummies.DummyHook attribute)

 	SimpleMenu (class in exopy.measurement.workspace.measurement_edition)

 	SimpleTask (class in exopy.tasks.tasks.base_tasks)

 	SimpleTaskExecutionEditor (class in exopy.measurement.editors.execution_editor.editor)

 	SkipEmpty (class in exopy.tasks.tasks.validators)

 	SkipLoop (class in exopy.tasks.tasks.validators)

 	SleepTask (class in exopy.tasks.tasks.util.sleep_task)

 	SleepView (class in exopy.tasks.tasks.util.views.sleep_view)

 	smooth_crash() (in module exopy.tasks.tasks.decorators)

 	sort (exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	sort_nodes() (exopy.measurement.editors.database_access_editor.editor_model.NodeModel method)

 	StandardEditor (class in exopy.measurement.editors.standard_editor)

 	start (exopy.tasks.tasks.logic.loop_linspace_interface.LinspaceLoopInterface attribute)

 	start() (exopy.app.app_plugin.AppPlugin method)

 	(exopy.app.dependencies.plugin.DependenciesPlugin method)

 	(exopy.app.errors.plugin.ErrorsPlugin method)

 	(exopy.app.preferences.plugin.PrefPlugin method)

 	(exopy.app.states.plugin.StatePlugin method)

 	(exopy.instruments.plugin.InstrumentManagerPlugin method)

 	(exopy.instruments.starters.base_starter.BaseStarter method)

 	(exopy.measurement.monitors.base_monitor.BaseMonitor method)

 	(exopy.measurement.monitors.text_monitor.plugin.TextMonitorPlugin method)

 	(exopy.measurement.plugin.MeasurementPlugin method)

 	(exopy.measurement.workspace.measurement_tracking.MeasurementTracker method)

 	(exopy.measurement.workspace.workspace.MeasurementSpace method)

 	(exopy.tasks.plugin.TaskManagerPlugin method)

 	(exopy.testing.measurement.dummies.DummyMonitor method)

 	(exopy.utils.plugin_tools.BaseCollector method)

 	(exopy.utils.plugin_tools.HasPreferencesPlugin method)

 	start_driver() (exopy.tasks.tasks.instr_task.InstrumentTask method)

 	start_logging() (in module exopy.app.log.manifest)

 	start_measurement() (exopy.measurement.processor.MeasurementProcessor method)

 	start_processing_measurements() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	Starter (class in exopy.instruments.starters.base_starter)

 	starter (exopy.instruments.drivers.driver_decl.Driver attribute)

 	(exopy.instruments.drivers.driver_decl.Drivers attribute)

 	(exopy.instruments.infos.DriverInfos attribute)

 	(exopy.instruments.starters.base_starter.Starter attribute)

 	starters (exopy.instruments.plugin.InstrumentManagerPlugin attribute)

 	startup (exopy.app.app_plugin.AppPlugin attribute)

 	State (class in exopy.app.states.state)

 	state_plugin_factory() (in module exopy.app.states.manifest)

 	StateManifest (class in exopy.app.states.manifest)

 	StatePlugin (class in exopy.app.states.plugin)

 	status (exopy.measurement.engines.base_engine.BaseEngine attribute)

 	(exopy.measurement.measurement.Measurement attribute)

 	STD_ICON_MAP (in module exopy.utils.widgets.qt_tree_widget)

 	step (exopy.tasks.tasks.logic.loop_linspace_interface.LinspaceLoopInterface attribute)

 	stop (exopy.tasks.tasks.logic.loop_linspace_interface.LinspaceLoopInterface attribute)

 	stop() (exopy.app.app_plugin.AppPlugin method)

 	(exopy.app.dependencies.plugin.DependenciesPlugin method)

 	(exopy.app.errors.plugin.ErrorsPlugin method)

 	(exopy.app.packages.plugin.PackagesPlugin method)

 	(exopy.app.preferences.plugin.PrefPlugin method)

 	(exopy.app.states.plugin.StatePlugin method)

 	(exopy.instruments.plugin.InstrumentManagerPlugin method)

 	(exopy.instruments.starters.base_starter.BaseStarter method)

 	(exopy.measurement.engines.base_engine.BaseEngine method)

 	(exopy.measurement.engines.process_engine.engine.ProcessEngine method)

 	(exopy.measurement.hooks.base_hooks.BaseExecutionHook method)

 	(exopy.measurement.monitors.base_monitor.BaseMonitor method)

 	(exopy.measurement.monitors.text_monitor.plugin.TextMonitorPlugin method)

 	(exopy.measurement.plugin.MeasurementPlugin method)

 	(exopy.measurement.workspace.measurement_tracking.MeasurementTracker method)

 	(exopy.measurement.workspace.workspace.MeasurementSpace method)

 	(exopy.tasks.plugin.TaskManagerPlugin method)

 	(exopy.tasks.tasks.decorators.ThreadDispatcher method)

 	(exopy.testing.measurement.dummies.DummyEngine method)

 	(exopy.testing.measurement.dummies.DummyHook method)

 	(exopy.testing.measurement.dummies.DummyMonitor method)

 	(exopy.utils.plugin_tools.BaseCollector method)

 	stop_called (exopy.testing.measurement.dummies.DummyHook attribute)

 	stop_current_measurement() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	stop_measurement() (exopy.measurement.processor.MeasurementProcessor method)

 	stop_processing() (exopy.measurement.processor.MeasurementProcessor method)

 	stop_processing_measurements() (exopy.measurement.workspace.workspace.MeasurementSpace method)

 	stop_tracking() (exopy.testing.util.ObjectTracker method)

 	stoppable (exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	StreamToLogRedirector (class in exopy.app.log.tools)

 	subclass (exopy.tasks.filters.SubclassTaskFilter attribute)

 	SubclassTaskFilter (class in exopy.tasks.filters)

 	subconfig (exopy.tasks.configs.loop_config.LoopTaskConfig attribute)

 	SubprocessLogPanel (class in exopy.measurement.engines.process_engine.engine_declaration)

 	subtask (exopy.tasks.configs.loop_config.LoopTaskConfig attribute)

 	subview (exopy.tasks.configs.loop_config.LoopTaskConfig attribute)

 	success (exopy.measurement.engines.base_engine.ExecutionInfos attribute)

 	suffixes (exopy.measurement.monitors.text_monitor.rules.base.BaseRule attribute)

 	SuffixesValidator (class in exopy.measurement.monitors.text_monitor.rules.std_views)

 	sync (exopy.instruments.widgets.profile_edition.ProfileEditionWidget attribute)

 	sync_members (exopy.app.states.state.State attribute)

 	sys_path() (in module exopy.testing.fixtures)

 	SystematicFileUpdater (class in exopy.utils.watchdog)

T

 	
 	tagged_members() (in module exopy.utils.atom_util)

 	Task (class in exopy.tasks.declarations)

 	task (exopy.measurement.editors.database_access_editor.editor_model.NodeModel attribute)

 	(exopy.measurement.editors.execution_editor.editor.SimpleTaskExecutionEditor attribute)

 	(exopy.measurement.engines.base_engine.ExecutionInfos attribute)

 	(exopy.tasks.declarations.Task attribute)

 	(exopy.tasks.tasks.base_views.BaseTaskView attribute)

 	(exopy.tasks.tasks.logic.loop_task.LoopTask attribute)

 	(exopy.tasks.tasks.task_editor.FoldableTaskEditor attribute)

 	(exopy.tasks.tasks.task_editor.TaskEditor attribute)

 	(exopy.tasks.tasks.task_editor.TaskEditorButton attribute)

 	(exopy.tasks.tasks.task_interface.IInterface attribute)

 	(exopy.tasks.tasks.task_interface.TaskInterface attribute)

 	task_class (exopy.tasks.configs.base_configs.BaseTaskConfig attribute)

 	task_doc (exopy.tasks.configs.base_configs.PyTaskConfig attribute)

 	task_execution_result (exopy.measurement.measurement.Measurement attribute)

 	task_id (exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	(exopy.tasks.tasks.base_tasks.RootTask attribute)

 	task_manager() (in module exopy.tasks.configs.base_configs)

 	(in module exopy.tasks.widgets.building)

 	(in module exopy.tasks.widgets.saving)

 	task_name (exopy.tasks.configs.base_configs.BaseTaskConfig attribute)

 	task_workbench() (in module exopy.testing.tasks.fixtures)

 	TaskConfig (class in exopy.tasks.declarations)

 	TaskConfigs (class in exopy.tasks.declarations)

 	TaskCopyAction (class in exopy.measurement.workspace.measurement_edition)

 	TaskDatabase (class in exopy.tasks.tasks.database)

 	TaskEditor (class in exopy.tasks.tasks.task_editor)

 	TaskEditorButton (class in exopy.tasks.tasks.task_editor)

 	TaskFilter (class in exopy.tasks.filters)

 	TaskInfos (class in exopy.tasks.infos)

 	TaskInterface (class in exopy.tasks.tasks.task_interface)

 	TaskManagerPlugin (class in exopy.tasks.plugin)

 	TaskProcess (class in exopy.measurement.engines.process_engine.subprocess)

 	Tasks (class in exopy.tasks.declarations)

 	tasks (exopy.tasks.widgets.browsing.TaskSelector attribute)

 	TaskSelector (class in exopy.tasks.widgets.browsing)

 	TasksManagerManifest (class in exopy.tasks.manifest)

 	TaskTreeNode (class in exopy.measurement.workspace.measurement_edition)

 	template_doc (exopy.tasks.configs.base_configs.TemplateTaskConfig attribute)

 	template_path (exopy.tasks.configs.base_configs.TemplateTaskConfig attribute)

 	TemplateConfigView (class in exopy.tasks.configs.base_config_views)

 	templates (exopy.tasks.plugin.TaskManagerPlugin attribute)

 	TemplateSaverDialog (class in exopy.tasks.widgets.saving)

 	
 	TemplateSaverModel (class in exopy.tasks.widgets.saving)

 	TemplateSelector (class in exopy.tasks.widgets.building)

 	TemplateTaskConfig (class in exopy.tasks.configs.base_configs)

 	TemplateViewer (class in exopy.tasks.widgets.saving)

 	test() (exopy.utils.flags.BitFlag method)

 	test_driver() (exopy.tasks.tasks.instr_task.InstrumentTask method)

 	text (exopy.app.log.tools.LogModel attribute)

 	(exopy.tasks.widgets.saving.TemplateViewer attribute)

 	(exopy.utils.widgets.qt_autoscroll_html.QtAutoscrollHtml attribute)

 	(exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	text_changed() (exopy.utils.widgets.qt_completers.QDelimitedCompleter method)

 	text_monitor_workbench() (in module exopy.testing.measurement.monitors.text_monitor.fixtures)

 	TextMonitor (class in exopy.measurement.monitors.text_monitor.monitor)

 	TextMonitorEdit (class in exopy.measurement.monitors.text_monitor.monitor_views)

 	TextMonitorItem (class in exopy.measurement.monitors.text_monitor.monitor_views)

 	TextMonitorManifest (class in exopy.measurement.monitors.text_monitor.manifest)

 	TextMonitorPlugin (class in exopy.measurement.monitors.text_monitor.plugin)

 	thread_id (exopy.tasks.tasks.base_tasks.RootTask attribute)

 	ThreadDispatcher (class in exopy.tasks.tasks.decorators)

 	ThreadMeasureMonitor (class in exopy.measurement.engines.utils)

 	ThreadPoolResource (class in exopy.tasks.tasks.shared_resources)

 	time (exopy.tasks.tasks.util.sleep_task.SleepTask attribute)

 	timing (exopy.tasks.tasks.logic.loop_task.LoopTask attribute)

 	title (exopy.instruments.settings.base_settings.BaseSettings attribute)

 	to_string (exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	tool (exopy.measurement.workspace.tools_edition.NonEditableTool attribute)

 	tool_decl() (in module exopy.measurement.base_tool)

 	ToolsEditor (class in exopy.measurement.workspace.tools_edition)

 	ToolsEditorDockItem (class in exopy.measurement.workspace.tools_edition)

 	ToolSelector (class in exopy.measurement.workspace.tools_edition)

 	tooltip (exopy.utils.widgets.tree_nodes.TreeNode attribute)

 	traverse() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	(exopy.tasks.tasks.base_tasks.ComplexTask method)

 	(exopy.tasks.tasks.task_interface.BaseInterface method)

 	(exopy.tasks.tasks.task_interface.InterfaceableMixin method)

 	traverse_config() (in module exopy.utils.configobj_ops)

 	tree_enabled (exopy.measurement.editors.base_editor.BaseEditor attribute)

 	tree_visible (exopy.measurement.editors.base_editor.BaseEditor attribute)

 	TreeNode (class in exopy.utils.widgets.tree_nodes)

 	trim_description() (in module exopy.instruments.widgets.profile_edition)

 	try_apply() (exopy.measurement.monitors.text_monitor.rules.base.BaseRule method)

 	(exopy.measurement.monitors.text_monitor.rules.std_rules.FormatRule method)

 	(exopy.measurement.monitors.text_monitor.rules.std_rules.RejectRule method)

 	types (exopy.tasks.tasks.validators.Feval attribute)

U

 	
 	unavailable (exopy.app.dependencies.plugin.RuntimeContainer attribute)

 	unbind_observers() (exopy.measurement.editors.execution_editor.editor_model.ExecutionEditorModel method)

 	undisplayed_entries (exopy.measurement.monitors.text_monitor.monitor.TextMonitor attribute)

 	UnknownErrorWidget (class in exopy.app.errors.widgets)

 	unlink_from_measurement() (exopy.measurement.base_tool.BaseMeasureTool method)

 	(exopy.measurement.monitors.base_monitor.BaseMonitor method)

 	unregister() (exopy.instruments.drivers.driver_decl.Driver method)

 	(exopy.measurement.monitors.text_monitor.rules.base.RuleType method)

 	(exopy.tasks.declarations.Interface method)

 	(exopy.tasks.declarations.Task method)

 	(exopy.tasks.declarations.TaskConfig method)

 	(exopy.utils.declarator.Declarator method)

 	(exopy.utils.declarator.GroupDeclarator method)

 	unregister_from_database() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	(exopy.tasks.tasks.base_tasks.ComplexTask method)

 	update() (exopy.instruments.infos.InstrumentModelInfos method)

 	(exopy.measurement.monitors.text_monitor.entry.MonitoredEntry method)

 	update_items (exopy.measurement.workspace.tools_edition.ToolsEditor attribute)

 	update_manufacturers() (exopy.instruments.infos.ManufacturersHolder method)

 	update_members_from_preferences() (exopy.utils.atom_util.HasPrefAtom method)

 	(exopy.utils.plugin_tools.HasPreferencesPlugin method)

 	(in module exopy.utils.atom_util)

 	
 	update_models() (exopy.instruments.infos.SeriesInfos method)

 	update_object() (exopy.utils.widgets.qt_completers.QtLineCompleter method)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter method)

 	update_preferences_from_members() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	(exopy.tasks.tasks.base_tasks.ComplexTask method)

 	(exopy.tasks.tasks.base_tasks.SimpleTask method)

 	(exopy.tasks.tasks.task_interface.InterfaceableTaskMixin method)

 	update_series_and_models() (exopy.instruments.infos.ManufacturerInfos method)

 	updaters (exopy.measurement.monitors.text_monitor.monitor.TextMonitor attribute)

 	usb_interface_number (exopy.instruments.connections.visa_connections.VisaUSB attribute)

 	use_series (exopy.instruments.infos.ManufacturerInfos attribute)

 	(exopy.instruments.infos.ManufacturersHolder attribute)

 	(exopy.instruments.widgets.instrument_selection.ModelSelectionWidget attribute)

 	use_subtask (exopy.tasks.configs.loop_config.LoopTaskConfig attribute)

 	used_profiles (exopy.instruments.plugin.InstrumentManagerPlugin attribute)

 	user_id (exopy.instruments.settings.base_settings.BaseSettings attribute)

 	user_path (exopy.app.preferences.manifest.AppDirSelectionDialog attribute)

 	users (exopy.instruments.plugin.InstrumentManagerPlugin attribute)

 	util_task (exopy.tasks.tasks.util.definition_task.DefinitionTask attribute)

 	UtilTasks (class in exopy.tasks.tasks.util.declarations)

V

 	
 	valid (exopy.instruments.infos.DriverInfos attribute)

 	(exopy.instruments.widgets.profile_edition.SetValidator attribute)

 	validate (exopy.app.app_extensions.AppClosing attribute)

 	(exopy.measurement.monitors.text_monitor.rules.base_views.BaseRuleView attribute)

 	(exopy.measurement.monitors.text_monitor.rules.std_views.FormatRuleView attribute)

 	(exopy.measurement.monitors.text_monitor.rules.std_views.RejectRuleView attribute)

 	validate() (exopy.app.app_extensions.AppClosing method)

 	(exopy.app.dependencies.dependencies.BuildDependency method)

 	(exopy.app.dependencies.dependencies.RuntimeDependencyCollector method)

 	(exopy.instruments.infos.DriverInfos method)

 	(exopy.instruments.widgets.profile_edition.SetValidator method)

 	(exopy.measurement.monitors.text_monitor.rules.base_views.RuleIdValidator method)

 	(exopy.measurement.monitors.text_monitor.rules.std_views.SuffixesValidator method)

 	(exopy.tasks.tasks.validators.Feval method)

 	validate_closing() (exopy.app.app_plugin.AppPlugin method)

 	(in module exopy.measurement.manifest)

 	validate_dependencies() (exopy.app.dependencies.plugin.DependenciesPlugin method)

 	validate_ext (exopy.utils.plugin_tools.ExtensionsCollector attribute)

 	validate_profile_infos() (in module exopy.instruments.infos)

 	validate_starter() (in module exopy.instruments.plugin)

 	validate_user() (in module exopy.instruments.plugin)

 	
 	value (exopy.measurement.monitors.text_monitor.entry.MonitoredEntry attribute)

 	(exopy.utils.widgets.dict_editor.Pair attribute)

 	(exopy.utils.widgets.dict_tree_view.Leaf attribute)

 	version_info (in module exopy.version)

 	view (exopy.measurement.monitors.text_monitor.rules.base.RuleType attribute)

 	(exopy.measurement.monitors.text_monitor.rules.infos.RuleInfos attribute)

 	(exopy.tasks.declarations.Task attribute)

 	(exopy.tasks.declarations.TaskConfig attribute)

 	(exopy.tasks.infos.ConfigInfos attribute)

 	(exopy.tasks.infos.TaskInfos attribute)

 	view_for (exopy.measurement.editors.database_access_editor.editor.DatabaseAccessEditor attribute)

 	(exopy.measurement.editors.execution_editor.editor.ExecutionEditor attribute)

 	(exopy.tasks.tasks.base_views.RootTaskView attribute)

 	views (exopy.tasks.declarations.Interface attribute)

 	(exopy.tasks.infos.InterfaceInfos attribute)

 	VisaConnection (class in exopy.instruments.connections.visa_connections)

 	VisaGPIB (class in exopy.instruments.connections.visa_connections)

 	VisaRaw (class in exopy.instruments.connections.visa_connections)

 	VisaRS232 (class in exopy.instruments.connections.visa_connections)

 	VisaTCPIP (class in exopy.instruments.connections.visa_connections)

 	VisaUSB (class in exopy.instruments.connections.visa_connections)

W

 	
 	w (exopy.utils.widgets.qt_completers.QtLineCompleter attribute)

 	(exopy.utils.widgets.qt_completers.QtTextCompleter attribute)

 	(exopy.utils.widgets.qt_list_str_widget.QtListStrWidget attribute)

 	(exopy.utils.widgets.qt_tree_widget.QtTreeWidget attribute)

 	wait (exopy.tasks.tasks.base_tasks.BaseTask attribute)

 	(exopy.tasks.tasks.util.formula_task.FormulaTask attribute)

 	(exopy.tasks.tasks.util.log_task.LogTask attribute)

 	(exopy.tasks.tasks.util.sleep_task.SleepTask attribute)

 	wait() (exopy.utils.flags.BitFlag method)

 	waiting (exopy.testing.measurement.dummies.DummyEngine attribute)

 	(exopy.testing.measurement.dummies.DummyHook attribute)

 	walk_interfaces() (exopy.tasks.infos.ObjectDependentInfos method)

 	warn (exopy.tasks.tasks.validators.Feval attribute)

 	watchdog_on_travis() (in module exopy.testing.fixtures)

 	when_label_changed() (exopy.utils.widgets.tree_nodes.TreeNode method)

 	WhileTask (class in exopy.tasks.tasks.logic.while_task)

 	WhileView (class in exopy.tasks.tasks.logic.views.while_view)

 	widget (exopy.testing.windows.ContainerTestingWindow attribute)

 	(exopy.testing.windows.DockItemTestingWindow attribute)

 	(exopy.testing.windows.PageTestingWindow attribute)

 	window_title (exopy.measurement.workspace.workspace.MeasurementSpace attribute)

 	windows() (in module exopy.testing.fixtures)

 	
 	workbench (exopy.measurement.editors.standard_editor.StandardEditor attribute)

 	(exopy.testing.windows.ContainerTestingWindow attribute)

 	(exopy.testing.windows.DockItemTestingWindow attribute)

 	(exopy.testing.windows.PageTestingWindow attribute)

 	(exopy.utils.plugin_tools.BaseCollector attribute)

 	workbench() (in module exopy.testing.fixtures)

 	workspace (exopy.measurement.plugin.MeasurementPlugin attribute)

 	(exopy.measurement.workspace.content.MeasureContent attribute)

 	(exopy.measurement.workspace.manifest.MeasurementSpaceMenu attribute)

 	(exopy.measurement.workspace.measurement_edition.ComplexMenu attribute)

 	(exopy.measurement.workspace.measurement_edition.MeasEditionView attribute)

 	(exopy.measurement.workspace.measurement_edition.MeasureEditorDialog attribute)

 	(exopy.measurement.workspace.measurement_edition.MeasurementEditorDockItem attribute)

 	(exopy.measurement.workspace.measurement_edition.SaveAction attribute)

 	(exopy.measurement.workspace.measurement_edition.SimpleMenu attribute)

 	(exopy.measurement.workspace.measurement_edition.TaskCopyAction attribute)

 	(exopy.measurement.workspace.measurement_execution.ExecutionDockItem attribute)

 	workspace() (in module exopy.testing.measurement.workspace.fixtures)

 	workspace_factory() (in module exopy.measurement.manifest)

 	write_error() (exopy.app.log.tools.StreamToLogRedirector method)

 	write_in_database() (exopy.tasks.tasks.base_tasks.BaseTask method)

 	write_info() (exopy.app.log.tools.StreamToLogRedirector method)

 	write_to_file() (exopy.instruments.infos.ProfileInfos method)

exopy.measurement.base_tool module

Measurement tools are meant to specify actions not covered by the tasks.

The class defined here are not meant to be used directly. One should rather
subclass one of their subclasses according to the kind of tool one wants to
create.

The existing kind of tools are the following :

	pre-measurement execution hook : used to perform additional operations before
running a measurement. (see hooks package)

	monitors : used to follow the progress of a measurement. (see monitors
package)

	post-measurement execution hook : used to perform additional operations after
the measurement has been run. (see hooks package)

	
exopy.measurement.base_tool.tool_decl()

	Forward typing for the declaration member of the BaseMeasureTool.

	
exopy.measurement.base_tool.measurement()

	Delayed import to avoid circular import issues.

	
class exopy.measurement.base_tool.BaseMeasureTool

	Bases: exopy.utils.atom_util.HasPrefAtom

Base tool simply definig the expected interface.

	
measurement

	Reference to the measurement to which that tool is linked
(None if unlinked)

	
declaration

	Reference to the declaration of this tool.

	
check(workbench, **kwargs)

	Ensure that the tool is properly configured and will be able to work

	Parameters

	
	workbench – Reference to the application workbench.

	kwargs – Additional keywords providing infos about the context of execution.
For example if any runtime dependencie is unavailable it will be
listed in the missing keyword argument.

	
get_state()

	Get the current state of the tool. Used when saving.

	
set_state(state)

	Restore the state of the tool from a preferences dict.

	
link_to_measurement(measurement)

	Link this tool to a measurement.

	
unlink_from_measurement()

	Unlink this tool from the measurement to which it is linked.

	
class exopy.measurement.base_tool.BaseToolDeclaration(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Base class for defining a measurement tool contribution.

	
id

	Unique name used to identify the tool.
The usual format is top_level_package_name.tool_name

	
description

	Description of the tool.

	
has_view

	Flag indicating whether the tool has an associated parametrisation
widget.

	
new(workbench, default=True)

	Create a new instance of the tool.

	Parameters

	
	workbench (Workbench) – Reference to the application workbench.

	default (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag indicating whether to use default parameters when creating the
tool or not. Mainly used when loading a tool from a saved config.

	
make_view(workbench, tool)

	Create a widget to edit the tool parameters.

This widget should inherit from Container.

exopy.measurement.container module

Specialised container used to store measures.

	
class exopy.measurement.container.MeasurementContainer

	Bases: atom.atom.Atom

Generic container for measures.

	
measurements

	List containing the measures. This must not be manipulated directly
by user code.

	
changed

	Signal used to notify changes to the stored measures.

	
add(measurement, index=None)

	Add a measurement to the stored ones.

	Parameters

	
	measurement (Measurement) – Measurement to add.

	index (int | None) – Index at which to insert the measurement. If None the measurement
is appended.

	
remove(measures)

	Remove a measurement or a list of measurement.

	Parameters

	measures (Measurement|list[Measurement]) – Measurement(s) to remove.

	
move(old, new)

	Move a measurement.

	Parameters

	
	old (int [https://docs.python.org/3/library/functions.html#int]) – Index at which the measurement to move currently is.

	new_position (int [https://docs.python.org/3/library/functions.html#int]) – Index at which to insert the measurement.

exopy.measurement package

Subpackages

	editors
	Subpackages
	database_access_editor
	Submodules
	exopy.measurement.editors.database_access_editor.editor module

	exopy.measurement.editors.database_access_editor.editor_model module

	execution_editor
	Submodules
	exopy.measurement.editors.execution_editor.editor module

	exopy.measurement.editors.execution_editor.editor_model module

	Submodules
	exopy.measurement.editors.base_editor module

	exopy.measurement.editors.standard_editor module

	engines
	Subpackages
	process_engine
	Submodules
	exopy.measurement.engines.process_engine.engine module

	exopy.measurement.engines.process_engine.engine_declaration module

	exopy.measurement.engines.process_engine.subprocess module

	Submodules
	exopy.measurement.engines.base_engine module

	exopy.measurement.engines.selection module

	exopy.measurement.engines.utils module

	hooks
	Submodules
	exopy.measurement.hooks.base_hooks module

	exopy.measurement.hooks.internal_checks module

	monitors
	Subpackages
	text_monitor
	Subpackages
	rules
	Submodules
	exopy.measurement.monitors.text_monitor.rules.base module

	exopy.measurement.monitors.text_monitor.rules.base_views module

	exopy.measurement.monitors.text_monitor.rules.edition_views module

	exopy.measurement.monitors.text_monitor.rules.infos module

	exopy.measurement.monitors.text_monitor.rules.std_rules module

	exopy.measurement.monitors.text_monitor.rules.std_views module

	Submodules
	exopy.measurement.monitors.text_monitor.custom_entry_edition module

	exopy.measurement.monitors.text_monitor.entry module

	exopy.measurement.monitors.text_monitor.manifest module

	exopy.measurement.monitors.text_monitor.monitor module

	exopy.measurement.monitors.text_monitor.monitor_views module

	exopy.measurement.monitors.text_monitor.plugin module

	Submodules
	exopy.measurement.monitors.base_monitor module

	workspace
	Submodules
	exopy.measurement.workspace.checks_display module

	exopy.measurement.workspace.content module

	exopy.measurement.workspace.manifest module

	exopy.measurement.workspace.monitors_window module

	exopy.measurement.workspace.tools_edition module

	exopy.measurement.workspace.workspace module

Submodules

	exopy.measurement.base_tool module

	exopy.measurement.container module

	exopy.measurement.manifest module

	exopy.measurement.plugin module

	exopy.measurement.processor module

exopy.measurement.manifest module

Measurement plugin manifest.

	
class exopy.measurement.manifest.MeasureManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Manifest of the MeasurementPlugin.

The measurement plugin handles measurement edition and execution.

	
exopy.measurement.manifest.measurement_plugin_factory()

	Factory function for the plugin.

Delayed import allow faster start-up.

	
exopy.measurement.manifest.validate_closing(window, event)

	Check that no measurement is currently running before app closing.

	
exopy.measurement.manifest.workspace_factory(workbench)

	Factory function for the workspace.

Delayed import allow faster start-up.

exopy.measurement.measurement module

Main objects used to represent all the aspects of a measurement (main task,
attached tools, dependencies, …)

	
exopy.measurement.measurement.measurement_plugin()

	Delayed to avoid circular references.

	
class exopy.measurement.measurement.MeasurementDependencies

	Bases: atom.atom.Atom

Container used to store the dependencies of a measurement.

	
measurement

	Reference to the Measurement this object is linked to.

	
collect_runtimes()

	Collect all the runtime needed to execute the measurement.

Those can then be accessed using get_runtime_dependencies

	Returns

	
	result (bool) – Boolean indicating whether or not the collection succeeded. Note
that even if the collection failed, some dependencies may have been
collected (other being unavailable) and must hence be released.

	msg (unicode) – String explaning why the operation failed if it failed.

	errors (dict) – Dictionary describing in details the errors. If some dependencies
does exist but cannot be accessed at the time of the query an entry
‘unavailable’ will be present.

	
release_runtimes()

	Release all the runtimes collected for the execution.

	
get_build_dependencies()

	Get the build dependencies associated with the main task.

	Returns

	dependencies – BuildContainer as returned by ‘exopy.app.dependencies.collect’.
The errors member should be checked to detect errors.

	Return type

	BuildContainer

	
get_runtime_dependencies(id)

	Access the runtime dependencies associated with a hook or the main
task

	Parameters

	id (unicode) – Id of the hook for which to retrieve the runtimes or ‘main’ for
the main task.

	Returns

	dependencies – Dependencies for the requested measurement component.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	RuntimeError : – Raised if this method is called before collect_runtimes.

	
reset()

	Cleanup all cached values.

	
class exopy.measurement.measurement.Measurement(**kwargs)

	Bases: exopy.utils.atom_util.HasPrefAtom

Object representing all the aspects of a measurement.

	
name

	Name of the measurement.

	
id

	Id of that particular iteration of the measurement. This value is used
when saving the measurement before running it. It is also communicated
to the root task

	
status

	Current measurement status.

	
infos

	Detailed information about the measurement status.

	
path

	Path to the last file in which that measurement was saved.

	
root_task

	Root task holding the measurement logic.

	
monitors

	Dict of active monitor for this measurement.

	
pre_hooks

	Dict of pre-measurement execution routines.

	
post_hooks

	Dict of post-measurement execution routines.

	
plugin

	Reference to the measurement plugin managing this measurement.

	
forced_enqueued

	Flag signaling whether the user chose to enqueue the measurement knowing
some tests are failing.

	
dependencies

	Object handling the collection and access to the measurement
dependencies.

	
task_execution_result

	Result object returned by the engine when the root_task has been
executed. Can be used by post-execution hook to adapt their behavior.

	
save(path)

	Save the measurement as a ConfigObj object.

	Parameters

	path (unicode) – Path of the file to which save the measurement.

	
classmethod load(measurement_plugin, path, build_dep=None)

	Build a measurement from a ConfigObj file.

	Parameters

	
	measurement_plugin (MeasurementPlugin) – Instance of the MeasurementPlugin storing all declarations.

	path (unicode) – Path of the file from which to load the measurement.

	build_dep (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Build dependencies of the main task.

	Returns

	
	measurement (Measurement | None) – Measurement buil from the config or None if and error occurred.

	errors (dict) – Dictionary describing the errors that occured.

	
run_checks(**kwargs)

	Run all measurement checks.

This is done at enqueueing time and before actually executing a
measurement save it it was forcibly enqueued. The dependencies needs to
be collected before calling this method.

	Parameters

	**kwargs – Keyword arguments to pass to the pre-operations.

	Returns

	
	result (bool) – Boolean indicating whether or not the operations succeeded.

	report (dict) – Dict storing the errors (as dict) by id of the operation in which
they occured.

	
enter_edition_state()

	Make the the measurement ready to be edited

	
enter_running_state()

	Make the measurement ready to run.

	
add_tool(kind, id, tool=None)

	Add a tool to the measurement.

Newly added tools are always appended to the list of existing ones.

	Parameters

	
	kind ({'monitor', 'pre-hook', 'post-hook'}) – Kind of tool being added to the measurement.

	id (unicode) – Id of the tool being added.

	tool (MeasureTool, optional) – Tool being added, if not specified a new instance will be created.

	
move_tool(kind, old, new)

	Modify hooks execution order.

	Parameters

	
	kind ({'pre-hook', 'post-hook'}) – Kind of hook to move.

	old (int [https://docs.python.org/3/library/functions.html#int]) – Index at which the tool is currently.

	new_pos (int [https://docs.python.org/3/library/functions.html#int]) – New index at which the tool should be.

	
remove_tool(kind, id)

	Remove a tool.

	Parameters

	kind ({'monitor', 'pre_hook', 'post_hook'}) – Kind of tool being added to the measurement.

	idunicode
	Id of the monitor to remove.

	
collect_monitored_entries()

	Get all the entries the monitors ask to be notified about.

	Returns

	entries – List of the entries the engine will to observe.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

exopy.measurement.plugin module

Plugin handling all measurement related functions.

	
class exopy.measurement.plugin.MeasurementPlugin

	Bases: exopy.utils.plugin_tools.HasPreferencesPlugin

The measurement plugin is reponsible for managing all measurement
related extensions and handling measurement execution.

	
workspace

	Reference to the workspace if any.

	
path

	Reference to the last directory from/in which a measurement was
loaded/saved

	
edited_measurements

	Currently edited measures.

	
enqueued_measurements

	Currently enqueued measures.

	
processor

	Measurement processor responsible for measurement execution.

	
engines

	List of currently available engines.

	
selected_engine

	Currently selected engine represented by its id.

	
engine_policy

	What to do of the engine when there is no more measurement to perform.

	
pre_hooks

	List of currently available pre-execution hooks.

	
default_pre_hooks

	Default pre-execution hooks to use for new measures.

	
monitors

	List of currently available monitors.

	
default_monitors

	Default monitors to use for new measures.

	
auto_show_monitors

	Always show monitors on measurement startup.

	
post_hooks

	List of currently available post-execution hooks.

	
default_post_hooks

	Default post-execution hooks to use for new measures.

	
editors

	List of currently available editors.

	
start()

	Start the plugin lifecycle by collecting all contributions.

	
stop()

	Stop the plugin and remove all observers.

	
get_declarations(kind, ids)

	Get the declarations of engines/editors/tools.

If an id does not correspond to a known declarations it will be omitted
from the return value, but no error will be raised. This is because the
user can easily know which declarations exist by looking at the
appropriate member of the plugin.

	Parameters

	
	kind ({'engine', 'editor', 'pre-hook', 'monitor', 'post-hook'}) – Kind of object to create.

	ids (list [https://docs.python.org/3/library/stdtypes.html#list]) – Ids of the declarations to return.

	Returns

	declarations – Declarations stored in a dict by id.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
create(kind, id, default=True)

	Create a new instance of an engine/editor/tool.

	Parameters

	
	kind ({'engine', 'editor', 'pre-hook', 'monitor', 'post-hook'}) – Kind of object to create.

	id (unicode) – Id of the object to create.

	default (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use default parameters or not when creating the object.

	Returns

	obj – New instance of the requested object.

	Return type

	BaseEngine|BaseMeasurementTool|BaseEditor

	Raises

	ValueError : – Raised if the provided kind or id in incorrect.

	
find_next_measurement()

	Find the next runnable measurement in the queue.

	Returns

	measurement – First valid measurement in the queue or None if there is no
available measurement.

	Return type

	Measurement|None

exopy.measurement.processor module

Object reponsible for a measurement execution.

Please note that the ‘real’ work of performing the tasks is handled by the
engine. This object handles all the other aspects (running of the hooks,
handling of the monitors, …)

	
exopy.measurement.processor.plugin()

	Delayed import to avoid circular references.

	
exopy.measurement.processor.schedule_and_block(func, args=(), kwargs={}, priority=100)

	Schedule a function call on the main thread and wait for it to complete.

	
class exopy.measurement.processor.MeasurementProcessor

	Bases: atom.atom.Atom

Object reponsible for a measurement execution.

	
active

	Boolean indicating whether or not the processor is working.

	
plugin

	Reference to the measurement plugin.

	
running_measurement

	Currently run measurement or last measurement run.

	
engine

	Instance of the currently used engine.

	
continuous_processing

	Boolean indicating whether or not process all enqueued measures.

	
monitors_window

	Monitors window

	
start_measurement(measurement)

	Start a new measurement.

	
pause_measurement()

	Pause the currently active measurement.

	
resume_measurement()

	Resume the currently paused measurement.

	
stop_measurement(no_post_exec=False, force=False)

	Stop the currently active measurement.

	
stop_processing(no_post_exec=False, force=False)

	Stop processing the enqueued measures.

	
exopy.measurement.processor.errors_to_msg(errors)

	Convert a dictionary of errors in a well formatted message.

exopy.measurement.editors.base_editor module

Base classes for all editors.

	
class exopy.measurement.editors.base_editor.BaseEditor(parent=None, **kwargs)

	Bases: exopy.utils.enaml_destroy_hook.add_destroy_hook.<locals>.Destroyable

Base class for all editors.

	
declaration

	Declaration defining this editor.

	
selected_task

	Currently selected task in the tree.

	
tree_visible

	Should the tree be visible when this editor is selected.

	
tree_enabled

	Should the tree be enabled when this editor is selected.

	
react_to_selection(workbench)

	Take any necessary actions when the editor is selected.

This method is called by the framework at the appropriate time.

	Parameters

	workbench (Workbench) – Reference to the application workbench.

	
react_to_unselection(workbench)

	Take any necessary actions when the editor is unselected.

This method is called by the framework at the appropriate time.

	Parameters

	workbench (Workbench) – Reference to the application workbench.

	
name

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
class exopy.measurement.editors.base_editor.Editor(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

A declarative class for contributing a measurement editor.

Editor object can be contributed as extensions child to the ‘editors’
extension point of the ‘exopy.measurement’ plugin.

	
id

	Unique name used to identify the editor.
The usual format is top_level_package_name.tool_name

	
description

	Editor description.

	
rank

	Rank of this editor. Editors are displayed by rank and alphabetical
order

	
new(workbench, default=True)

	Create a new instance of the editor.

	Parameters

	
	workbench (Workbench) – Reference to the application workbench.

	default (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use default parameters or not when creating the object.

	
is_meant_for(workbench, selected_task)

	Determine if the editor is fit to be used for the selected task.

	Parameters

	
	workbench (Workbench) – Reference to the application workbench.

	selected_task (BaseTask) – Currently selected task.

	Returns

	answer

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

exopy.measurement.editors package

Subpackages

	database_access_editor
	Submodules
	exopy.measurement.editors.database_access_editor.editor module

	exopy.measurement.editors.database_access_editor.editor_model module

	execution_editor
	Submodules
	exopy.measurement.editors.execution_editor.editor module

	exopy.measurement.editors.execution_editor.editor_model module

Submodules

	exopy.measurement.editors.base_editor module

	exopy.measurement.editors.standard_editor module

exopy.measurement.editors.standard_editor module

Editor using the task views.

	
class exopy.measurement.editors.standard_editor.StandardEditor(parent=None, **kwargs)

	Bases: exopy.measurement.editors.base_editor.BaseEditor

Standard editor displaying the selected task using the task view.

	
root_view

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
set_view_for

	

	
workbench

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.measurement.editors.database_access_editor.editor module

Editor allowing to extend the accessibility of database entries.

By default database entries are only uvailable to task on the same level or
to children task. By using access exceptions one can go round those
limitations.

	
class exopy.measurement.editors.database_access_editor.editor.BlueLabel(parent=None, **kwargs)

	Bases: enaml.styling.StyleSheet

Style sheet setting the background to lighblue

For unclear reasons this gives more consistent results than setting the
background member.

	
class exopy.measurement.editors.database_access_editor.editor.DatabaseAccessEditor(parent=None, **kwargs)

	Bases: exopy.measurement.editors.base_editor.BaseEditor

Editor allowing to extend the accessibility of database entries.

	
database_model

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
discard_view

	

	
set_view_for

	

	
view_for

	

	
class exopy.measurement.editors.database_access_editor.editor.NodeEditor(parent=None, **kwargs)

	Bases: enaml.widgets.group_box.GroupBox

Access editor for a NodeModel.

	
node

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
populate_nodes

	

	
refresh

	

	
root

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
show_children

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.measurement.editors.database_access_editor.editor_model module

Model driving the database exception editor.

	
class exopy.measurement.editors.database_access_editor.editor_model.NodeModel

	Bases: atom.atom.Atom

Object representing the database node state linked to a ComplexTask

	
task

	Reference to the task this node refers to.

	
entries

	Database entries available on the node associated with the task.

	
exceptions

	Database exceptions present on the node.

	
has_exceptions

	Database entries for which an access exception exists

	
children

	Children nodes

	
sort_nodes(nodes=None)

	Sort the nodes according to the task order.

New nodes can be passed to the methods in which case they will replace
the existing ones.

	
add_node(node)

	Add a node to the children of this one.

	
remove_node(node)

	Remove a node from the children.

We also discard all nodes that have no linked task
(happen when dicarding a ComplexTask containing other tasks).

	
add_exception(entry)

	Add an access exception.

	
class exopy.measurement.editors.database_access_editor.editor_model.EditorModel

	Bases: atom.atom.Atom

Model driving the database access editor.

	
root

	Reference to the root task of the currently edited task hierarchy.

	
nodes

	Dictionary storing the nodes for all tasks by path.

	
increase_exc_level(path, entry)

	Increase the exception level of an access exception.

	Parameters

	
	path (unicode) – Path of the node in which the exception to increase is.

	entry (unicode) – Entry whose access exception should be increased.

	
decrease_exc_level(path, entry)

	Decrease the exception level of an access exception.

	Parameters

	
	path (unicode) – Path of the node in which the exception to increase is.

	entry (unicode) – Entry whose access exception should be increased.

exopy.measurement.editors.database_access_editor package

Submodules

	exopy.measurement.editors.database_access_editor.editor module

	exopy.measurement.editors.database_access_editor.editor_model module

exopy.measurement.editors.execution_editor.editor module

Editors for task execution settings.

	
class exopy.measurement.editors.execution_editor.editor.ComplexTaskExecutionEditor(parent, **kwargs)

	Bases: exopy.measurement.editors.execution_editor.editor._BaseComplexTaskExecutionEditor

Editor specialized in handling ComplexTask subclasses.

	
refresh

	

	
root

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
show_children

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.editors.execution_editor.editor.ExecutionEditor(parent=None, **kwargs)

	Bases: exopy.measurement.editors.base_editor.BaseEditor

Editor allowing to customize the execution parameters of a task.

For each task one can decide whether to make the measurement stoppable at that
task level, to run it in parallel and/or make it wait on other task running
in parallel before running.

	
discard_view

	

	
pool_model

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
set_view_for

	

	
view_for

	

	
class exopy.measurement.editors.execution_editor.editor.SimpleTaskExecutionEditor(parent=None, **kwargs)

	Bases: enaml.widgets.group_box.GroupBox

Editor specialized in handling SimpleTask subclasses.

	
refresh

	

	
root

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
task

	

exopy.measurement.editors.execution_editor.editor_model module

Model for the execution editor keeping track of the declared pools.

	
class exopy.measurement.editors.execution_editor.editor_model.ExecutionEditorModel

	Bases: atom.atom.Atom

Model for the execution editor.

Walk all the tasks to determine which pool of tasks are defined and keep a
counter.

	
root

	Reference to the root task of the hierarchy.

	
pools

	List of already existing execution pools.

	
bind_observers()

	Set up the observers on the task hierarchy.

	
unbind_observers()

	Remove all the observer from all tasks.

exopy.measurement.editors.execution_editor package

Submodules

	exopy.measurement.editors.execution_editor.editor module

	exopy.measurement.editors.execution_editor.editor_model module

exopy.measurement.engines.base_engine module

Base classes for all engines

	
class exopy.measurement.engines.base_engine.ExecutionInfos

	Bases: atom.atom.Atom

Information necessary for engine to execute a task.

This object is also used by the engine to provide feedback about the
execution of the task.

	
id

	Id used to identify the task in logger messages.

	
task

	Task to execute.

	
build_deps

	Build dependencies. This allow to rebuild the task if necessary.

	
runtime_deps

	Runtime dependencies of the task.

	
observed_entries

	List of entries for which the engine should send updates during
processing.

	
checks

	Boolean indicating whether the engine should run the checks of the task.

	
success

	Boolean set by the engine, indicating whether or not the task was
successfully executed.

	
errors

	Errors which occured during the execution of the task if any.

	
class exopy.measurement.engines.base_engine.BaseEngine

	Bases: atom.atom.Atom

Base class for all engines.

	
declaration

	Declaration defining this engine.

	
status

	Current status of the engine.

	
progress

	Signal used to pass news about the measurement progress.

	
perform(exec_infos)

	Execute a given task and catch any error.

	Parameters

	exec_infos (ExecutionInfos) – TaskInfos object describing the work to expected of the engine.

	Returns

	exec_infos – Input object whose values have been updated. This is simply a
convenience.

	Return type

	ExecutionInfos

	
pause()

	Ask the engine to pause the execution.

This method should not wait for the task to pause to return.
When the pause is effective the engine should signal it by updating its
status.

	
resume()

	Ask the engine to resume the execution.

This method should not wait for the measurement to resume.
When the pause is over the engine should signal it by updating its
status.

	
stop(force=False)

	Ask the engine to stop the execution.

This method should not wait for the execution to stop save if a forced
stop was requested.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Force the engine to stop the performing the task. This allow the
engine to use any means necessary to stop, in this case only should
the call to this method block.

	
shutdown(force=False)

	Ask the engine to stop completely.

After a call to this method the engine may need to re-initialize a
number of things before running the next task.
This method should not wait for the engine to shutdown save if a
forced stop was requested.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Force the engine to stop the performing the task. This allow the
engine to use any means necessary to stop, in this case only should
the call to this method block.

	
class exopy.measurement.engines.base_engine.Engine(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

A declarative class for contributing an engine.

Engine object can be contributed as extensions child to the ‘engines’
extension point of the ‘exopy.measurement’ plugin.

The name member inherited from enaml.core.Object should always be set to an
easily understandable name for the user.

	
id

	Unique name used to identify the engine. Should be user understandable.

	
description

	Description of the engine

	
new(workbench, default=True)

	Create a new instance of the engine.

	Parameters

	
	workbench (Workbench) – Reference to the application workbench.

	default (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use default parameters or not when creating the object.

	
react_to_selection(workbench)

	Take any necessary actions when the engine is selected.

This method is called by the framework at the appropriate time.

	
react_to_unselection(workbench)

	Take any necessary actions when the engine is unselected.

This method is called by the framework at the appropriate time.

	
contribute_to_workspace(workspace)

	Add contributions to the workspace.

This method is called by the framework only if the engine is selected
and the workspace is active.

	
clean_workspace(workspace)

	Remove any contributions from the workspace.

This method is called by the framework only the workspace is active and
the engine is unselected.

exopy.measurement.engines package

Subpackages

	process_engine
	Submodules
	exopy.measurement.engines.process_engine.engine module

	exopy.measurement.engines.process_engine.engine_declaration module

	exopy.measurement.engines.process_engine.subprocess module

Submodules

	exopy.measurement.engines.base_engine module

	exopy.measurement.engines.selection module

	exopy.measurement.engines.utils module

exopy.measurement.engines.selection module

Widgets dedicated to selecting an engine for measurement execution.

	
class exopy.measurement.engines.selection.EngineSelector(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Simple dialog to select an engine.

	
plugin

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
selected_decl

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.measurement.engines.utils module

Useful tools for engines.

	
class exopy.measurement.engines.utils.MeasureSpy(queue, observed_entries, observed_database)

	Bases: atom.atom.Atom

Spy observing a task database and sending values update into a queue.

All updates are sent immediatly as no issues have been detected so far.
Using a timer based implementation would complicate things.

	
observed_entries

	Set of entries for which to send notifications.

	
observed_database

	Reference to the database that needs to be observed.

	
queue

	Queue in which to send the updates.

	
enqueue_update(change)

	Put an update in the queue.

Notes

Change is a tuple as this is connected to a Signal.

	
close()

	Put a dummy object signaling that no more updates will be sent.

	
class exopy.measurement.engines.utils.ThreadMeasureMonitor(engine, queue)

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

Thread sending a queue content to the news signal of an engine.

	
run()

	Send the news received from the queue to the engine news signal.

exopy.measurement.engines.process_engine.engine module

Engine executing the measurement in a different process.

	
class exopy.measurement.engines.process_engine.engine.ProcessEngine

	Bases: exopy.measurement.engines.base_engine.BaseEngine

An engine executing the tasks it is sent in a different process.

	
perform(exec_infos)

	Execute a given task.

	Parameters

	exec_infos (ExecutionInfos) – TaskInfos object describing the work to expected of the engine.

	Returns

	exec_infos – Input object whose values have been updated. This is simply a
convenience.

	Return type

	ExecutionInfos

Notes

IOError in pipe are raised only if an operation is attempted from the
process that closed the pipe, but never when trying to poll from a
different process.

	
pause()

	Ask the engine to pause the current task execution.

	
resume()

	Ask the engine to resume the currently paused job.

	
stop(force=False)

	Ask the engine to stop the current job.

This method should not wait for the job to stop save if a forced stop
was requested.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Force the engine to stop the performing the task. This allow the
engine to use any means necessary to stop, in this case only should
the call to this method block.

	
shutdown(force=False)

	Ask the engine to stop completely.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Force the engine to stop the performing the task. This allow the
engine to use any means necessary to stop, in this case only should
the call to this method block.

exopy.measurement.engines.process_engine.engine_declaration module

Declaration of the ProcessEngine and workspace related contribution.

	
class exopy.measurement.engines.process_engine.engine_declaration.ProcFilter

	Bases: atom.atom.Atom

Filter accepting or rejecting a log according to its process of origin.

	
filter(record)

	Accept or reject a log according to its process of origin.

	
process_name

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
reject_if_equal

	A value of type bool.

	
class exopy.measurement.engines.process_engine.engine_declaration.ProcessEngine(parent=None, **kwargs)

	Bases: exopy.measurement.engines.base_engine.Engine

Manifest contributing the ProcessEngine to the MeasurementPlugin.

	
clean_workspace

	

	
contribute_to_workspace

	

	
new

	

	
panel_name

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.engines.process_engine.engine_declaration.SubprocessLogPanel(parent=None, **kwargs)

	Bases: enaml.widgets.dock_item.DockItem

Log panel used to display the message coming from the subprocess.

	
model

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.measurement.engines.process_engine package

Submodules

	exopy.measurement.engines.process_engine.engine module

	exopy.measurement.engines.process_engine.engine_declaration module

	exopy.measurement.engines.process_engine.subprocess module

exopy.measurement.engines.process_engine.subprocess module

Subprocess executing the tasks sent by the subprocess engine.

	
class exopy.measurement.engines.process_engine.subprocess.TaskProcess(pipe, log_queue, monitor_queue, task_pause, task_paused, task_resumed, task_stop, process_stop)

	Bases: multiprocessing.context.Process

Process taking care of performing the measures.

When started this process sets up a logger redirecting all records to a
queue. It then redirects stdout and stderr to the logging system. Then as
long as it is not stopped it waits for the main process to send a
measures through the pipe. Upon reception of the ConfigObj object
describing the measurement it rebuilds it, set up a logger for that
specific measurement and if necessary starts a spy transmitting the value
of all monitored entries to the main process. It finally run the checks of
the measurement and run it. It can be interrupted by setting an event and
upon exit close the communication pipe and signal all listeners that it is
closing.

	Parameters

	
	pipe – Pipe used to communicate with the parent process which is transferring
the measurement to perform.

	log_queue – Queue in which all log records are sent to be procesed later in the
main process.

	monitor_queue – Queue in which all the informations the user asked to monitor during
the measurement are sent to be processed in the main process.

	task_pause – Event set when the user asked the running measurement to pause.

	task_paused – Event set when the current measurement is paused.

	task_stop – Event set when the user asked the running measurement to stop.

	process_stop – Event set when the user asked the process to stop.

	
meas_log_handler

	Log handler used to save the running measurement specific records.

	Type

	log handler

	
see `Parameters`

	

	
run():

	Method called when the new process starts.

	
run()

	Method called when the new process starts.

For a complete description of the workflow see the class
docstring.

exopy.measurement.hooks.base_hooks module

Base classes for all measurement hooks.

	
class exopy.measurement.hooks.base_hooks.BaseExecutionHook

	Bases: exopy.measurement.base_tool.BaseMeasureTool

Base class for all measurement hooks (pre or post execution).

The execution management methods (pause, resume, stop) need to be
implemented only if the execution of the hook is lengthy (this applies to
hook executing tasks).

	
paused

	Event which the hook should fired (with a value of True) when it
succeded to pause.

	
resumed

	Event which the hook should fired (with a value of True) when it
succeded to resume.

	
run(workbench, engine)

	Perform additional operations before/after the measurement.

This method can raise errors as necessary.

	Parameters

	
	workbench (Workbench) – Reference to the application workbench.

	engine (Engine) – Active engine that can be used to execute tasks.

	
pause()

	Pause the execution of the hook.

This call should not block waiting for the pause to occur. The paused
signal should be fired once the pause is achieved.

	
resume()

	Resume the execution of the hook.

This call should not block waiting for the resuming to occur. The
resumed signal should be fired once the execution resumed.

	
stop(force=False)

	Stop the execution of the hook.

This call should not block save if the force keyword is true. No signal
is emitted as the run method should return as a result of the stop.

	
list_runtimes(workbench)

	List the runtimes dependencies for this hook.

	Parameters

	workbench – Workbench of the application.

	Returns

	runtime – Runtime dependencies as returned by a call to the command
‘exopy.app.dependencies.analyse’. None means that the hook has no
runtime dependency.

	Return type

	RuntimeContainer | None

	
class exopy.measurement.hooks.base_hooks.BasePreExecutionHook

	Bases: exopy.measurement.hooks.base_hooks.BaseExecutionHook

Base class for pre-execution measurement hooks.

Notes

This kind of hook can contribute entries to the task database. If it does
so it should register those entries (add their name and a default value) at
the root level of the database at linking time so that they appear in the
autocompletion.

	
class exopy.measurement.hooks.base_hooks.BasePostExecutionHook

	Bases: exopy.measurement.hooks.base_hooks.BaseExecutionHook

Base class for post-execution measurement hooks.

	
class exopy.measurement.hooks.base_hooks.PreExecutionHook(parent=None, **kwargs)

	Bases: exopy.measurement.base_tool.BaseToolDeclaration

A declarative class for contributing a measurement pre-execution.

PreExecutionHook object can be contributed as extensions child to the
‘pre-execution’ extension point of the ‘exopy.measurement’ plugin.

	
class exopy.measurement.hooks.base_hooks.PostExecutionHook(parent=None, **kwargs)

	Bases: exopy.measurement.base_tool.BaseToolDeclaration

A declarative class for contributing a measurement post-execution.

PostExecutionHook object can be contributed as extensions child to the
‘post-execution’ extension point of the ‘exopy.measurement’ plugin.

exopy.measurement.hooks package

Submodules

	exopy.measurement.hooks.base_hooks module

	exopy.measurement.hooks.internal_checks module

exopy.measurement.hooks.internal_checks module

Implementaion of the InternalChecks hook.

	
class exopy.measurement.hooks.internal_checks.InternalChecksHook

	Bases: exopy.measurement.hooks.base_hooks.BasePreExecutionHook

Pre-execution hook running the main task checks.

	
check(workbench, **kwargs)

	Run the main task internal checks.

exopy.measurement.monitors.base_monitor module

Base classes for all monitors.

	
class exopy.measurement.monitors.base_monitor.BaseMonitor

	Bases: exopy.measurement.base_tool.BaseMeasureTool

Base class for all monitors.

	
monitored_entries

	List of database entries which should be observed

	
start()

	Start the activity of the monitor.

When this method is called the monitor is already observing the engine
and connected to its view.

	
stop()

	Stop the activity of the monitor.

When this method is invoked the monitor is no longer observing the
engine.

	
refresh_monitored_entries(entries=None)

	Refresh all the entries of the monitor.

	Parameters

	entries (dict [https://docs.python.org/3/library/stdtypes.html#dict][unicode], optionnal) – Dict of the database entries to consider, if empty the already
known entries will be used. Entries should be specified using their
full path.

	
handle_database_entries_change(news)

	Handle a modification of the database entries.

	Parameters

	news (tuple|list) – Modification passed as a tuple (‘added’, path, value) for creation,
as (‘renamed’, old, new, value) in case of renaming,
(‘removed’, old) in case of deletion or as a list of such tuples.

	
handle_database_node_change(news)

	Handle a modification of the database nodes.

	Parameters

	news (tuple|list) – Modification passed as a tuple (‘added’, path, name, node) for
creation or as (‘renamed’, path, old, new) in case of renaming of
the related node, as (‘removed’, path, old) in case of deletion or
as a list of such tuples.

	
process_news(news)

	Handle news received from the engine.

This method will be connected to the news signal of the engine when
the measurement is started. The value received will be a tuple
containing the name of the updated database entry and its new value.

This method is susceptible to be called in a thread that is not the GUI
thread. Any update of members that are connected to the view should be
done using enaml.application.deferred_call/schedule.

	
link_to_measurement(measurement)

	Start observing the main task database.

	
unlink_from_measurement()

	Stop observing the main task database.

	
class exopy.measurement.monitors.base_monitor.BaseMonitorItem(parent=None, **kwargs)

	Bases: enaml.widgets.dock_item.DockItem

Base class for the view associated with a monitor.

	
monitor

	Reference to the monitor driving this view. This is susceptible to
change during the lifetime of the widget.

	
float_default

	Should this item be made floating by default.

	
class exopy.measurement.monitors.base_monitor.Monitor(parent=None, **kwargs)

	Bases: exopy.measurement.base_tool.BaseToolDeclaration

A declarative class for defining a measurement monitor contribution.

Monitor object can be contributed as extensions child to the
‘monitors’ extension point of the ‘exopy.measurement’ plugin.

	
create_item(workbench, area)

	Create a dock item to display the informations of a monitor.

The item must be created with a name matching the id.
ex : return MyItem(name=self.id)

	Parameters

	
	workbench – Reference to the application workbench.

	area – Dock area to use as the dock item parent.

exopy.measurement.monitors package

Subpackages

	text_monitor
	Subpackages
	rules
	Submodules
	exopy.measurement.monitors.text_monitor.rules.base module

	exopy.measurement.monitors.text_monitor.rules.base_views module

	exopy.measurement.monitors.text_monitor.rules.edition_views module

	exopy.measurement.monitors.text_monitor.rules.infos module

	exopy.measurement.monitors.text_monitor.rules.std_rules module

	exopy.measurement.monitors.text_monitor.rules.std_views module

	Submodules
	exopy.measurement.monitors.text_monitor.custom_entry_edition module

	exopy.measurement.monitors.text_monitor.entry module

	exopy.measurement.monitors.text_monitor.manifest module

	exopy.measurement.monitors.text_monitor.monitor module

	exopy.measurement.monitors.text_monitor.monitor_views module

	exopy.measurement.monitors.text_monitor.plugin module

Submodules

	exopy.measurement.monitors.base_monitor module

exopy.measurement.monitors.text_monitor.custom_entry_edition module

Tools to edit and create entries with a custom formatting.

	
class exopy.measurement.monitors.text_monitor.custom_entry_edition.EntryDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog used to build a custom user entry for a TextMonitor.

	
builder

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
entry

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
monitor

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.measurement.monitors.text_monitor.entry module

Entries that can be displayed by the text monitor.

	
class exopy.measurement.monitors.text_monitor.entry.MonitoredEntry

	Bases: exopy.utils.atom_util.HasPrefAtom

Entry to display by the text monitor.

	
name

	User understandable name of the monitored entry.

	
path

	Full name of the entry as found or built from the database.

	
formatting

	Formatting of the entry.

	
value

	Current value that the monitor should display.

	
depend_on

	List of database entries the entry depend_on.

	
update(database_vals)

	Method updating the value of the entry given the current state of
the database.

exopy.measurement.monitors.text_monitor package

Subpackages

	rules
	Submodules
	exopy.measurement.monitors.text_monitor.rules.base module

	exopy.measurement.monitors.text_monitor.rules.base_views module

	exopy.measurement.monitors.text_monitor.rules.edition_views module

	exopy.measurement.monitors.text_monitor.rules.infos module

	exopy.measurement.monitors.text_monitor.rules.std_rules module

	exopy.measurement.monitors.text_monitor.rules.std_views module

Submodules

	exopy.measurement.monitors.text_monitor.custom_entry_edition module

	exopy.measurement.monitors.text_monitor.entry module

	exopy.measurement.monitors.text_monitor.manifest module

	exopy.measurement.monitors.text_monitor.monitor module

	exopy.measurement.monitors.text_monitor.monitor_views module

	exopy.measurement.monitors.text_monitor.plugin module

exopy.measurement.monitors.text_monitor.manifest module

Manifest of the plugin handling the storing of rules for the TextMonitor.

	
class exopy.measurement.monitors.text_monitor.manifest.TextMonitorManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Plugin handling the storing of rules for the TextMonitor.

	
exopy.measurement.monitors.text_monitor.manifest.plugin_factory()

	Plugin factory for the TextMonitoprPlugin.

exopy.measurement.monitors.text_monitor.monitor module

The text monitor displays the database values it observes in a text format.

	
exopy.measurement.monitors.text_monitor.monitor.import_monitor_plugin()

	Delayed import of the plugin to avoid circular imports.

	
class exopy.measurement.monitors.text_monitor.monitor.TextMonitor

	Bases: exopy.measurement.monitors.base_monitor.BaseMonitor

Simple monitor displaying entries as text in a widget.

	
displayed_entries

	List of the entries which should be displayed when a measurement is
running.
This should not be manipulated directly by user code.

	
undisplayed_entries

	List of the entries which should not be displayed when a measurement is
running. This should not be manipulated directly by user code.

	
hidden_entries

	List of the entries which should be not displayed when a measurement is
running because they would be redundant with another entry. (created by
a rule for example.)
This should not be manipulated directly by user code.

	
updaters

	Mapping between a database entry and a list of callable used for
updating a monitor entry which relies on the database entry.

	
rules

	List of rules which should be used to build monitor entries.

	
custom_entries

	List of user created monitor entries.

	
known_monitored_entries

	List of all the known database entries.

	
process_news(news)

	Handle a news by calling every related entrt updater.

	
refresh_monitored_entries(entries=None)

	Rebuild entries based on the rules and database entries.

	Parameters

	entries (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Database entries to use when rebuilding the monitor entries.

	
handle_database_entries_change(news)

	Generate new entries for added values and clean removed values.

	
handle_database_nodes_change(news)

	Update the paths when a node is renamed.

	
get_state()

	Write the state of the monitor in a dictionary.

	
set_state(state)

	Rebuild all rules and dispatch entries according to the state.

	
link_to_measurement(measurement)

	Set the entries according to the state if one is present.

	
add_entries(section, entries)

	Add entries to the specified section.

The entries should not be present in another section. (save hidden)

	Parameters

	
	section ({'displayed', 'undisplayed', 'hidden'}) – Section in which to add the entries.

	entry (iterable[MonitoredEntry]) – Entries to add.

	
move_entries(origin, destination, entries)

	Move entries from a section to another.

	Parameters

	
	origin ({'displayed', 'undisplayed', 'hidden'}) – Section in which the entries currently are.

	destination ({'displayed', 'undisplayed', 'hidden'}) – Section in which to put the entries.

	entries (iterable[MonitoredEntry]) – Entries to move.

	
remove_entries(section, entries)

	Remove entries to the specified section.

The entries should not be present in another section.

	Parameters

	
	section ({'displayed', 'undisplayed', 'hidden'}) – Section from which to remove the entries.

	entry (iterable[MonitoredEntry]) – Entries to remove.

exopy.measurement.monitors.text_monitor.monitor_views module

Widgets associated with the TextMonitor.

	
class exopy.measurement.monitors.text_monitor.monitor_views.TextMonitorEdit(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Widget used to edit the TextMonitor parameters during the measurement
edition.

	
monitor

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
selected

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.monitors.text_monitor.monitor_views.TextMonitorItem(parent=None, **kwargs)

	Bases: exopy.measurement.monitors.base_monitor.BaseMonitorItem

DockItem the monitor infos about the measurement.

exopy.measurement.monitors.text_monitor.plugin module

Plugin managing the preferences of the TextMonitor such as rules.

	
class exopy.measurement.monitors.text_monitor.plugin.TextMonitorPlugin

	Bases: exopy.utils.plugin_tools.HasPreferencesPlugin

Plugin managing the preferences of the TextMonitor.

	
default_rules

	A member which allows list values.

Assigning to a list creates a copy. The orginal list will remain
unmodified. This is similar to the semantics of the assignment
operator on the C++ STL container classes.

	
rule_types

	A member which allows list values.

Assigning to a list creates a copy. The orginal list will remain
unmodified. This is similar to the semantics of the assignment
operator on the C++ STL container classes.

	
rules

	A member which allows list values.

Assigning to a list creates a copy. The orginal list will remain
unmodified. This is similar to the semantics of the assignment
operator on the C++ STL container classes.

	
start()

	Start the plugin life-cycle.

	
stop()

	Stop the plugin and clear all ressources.

	
build_rule(name_or_config)

	Build rule from a dict.

	Parameters

	name_or_config (unicode|dict) – Name of the rule to build or dict containing the infos to build the
rule from scratch.

	Returns

	rule – New rule properly initialized.

	Return type

	BaseRule | None

	
get_rule_type(rule_type_id)

	Access the class corresponding to a given id.

	
get_rule_view(rule)

	CReate a view corresponding to the given object.

	
save_rule(rule)

	Add a rule present on a plugin to the saved rules.

	
create_monitor(default=False)

	Create a new monitor.

	Parameters

	default (bool [https://docs.python.org/3/library/functions.html#bool], optionnal) – Whether or not to add the default rules to the new monitor.

	Returns

	monitor – New text monitor.

	Return type

	TextMonitor

exopy.measurement.monitors.text_monitor.rules.base module

Rules allow to defines some automatic handling of database entries in the
TextMonitor.

	
class exopy.measurement.monitors.text_monitor.rules.base.BaseRule

	Bases: exopy.utils.atom_util.HasPrefAtom

Base class for all rules implementations.

	
id

	Name of the rule.

	
description

	Quick description of what this rule is intended for.

	
suffixes

	List of database entries suffixes used to identify the entries which
contributes to the rule.

	
class_id

	Id of the class used for persistence.

	
try_apply(new_entry, monitor)

	Attempt to apply the rule.

	Parameters

	
	new_entry (str [https://docs.python.org/3/library/stdtypes.html#str]) – Database path of the newly added entry.

	monitor (TextMonitor) – Instance of the text monitor trying to apply the rule.

	
class exopy.measurement.monitors.text_monitor.rules.base.Rules(parent=None, **kwargs)

	Bases: exopy.utils.declarator.GroupDeclarator

Declarator used to group rules declarations.

	
class exopy.measurement.monitors.text_monitor.rules.base.RuleType(parent=None, **kwargs)

	Bases: exopy.utils.declarator.Declarator

Declarator used to contribute a text monitor rule.

	
rule

	Path to the rule object. Path should be dot separated and the class
name preceded by ‘:’.
ex: exopy.measurement.monitors.text_monitor.std_rules:RejectRule
The path of any parent GroupDeclarator object will be prepended to it.

	
view

	Path to the view object associated with the task.
The path of any parent GroupDeclarator object will be prepended to it.

	
register(collector, traceback)

	Collect rule and view and store them into the DeclaratorCollector
contributions member.

The group declared by a parent if any is taken into account.

	
unregister(collector)

	Remove contributed infos from the collector.

	
class exopy.measurement.monitors.text_monitor.rules.base.RuleConfig(parent=None, **kwargs)

	Bases: enaml.core.declarative.Declarative

Object to contribute a concrete rule.

This rule will only be used if no user defined rule with the same name
is defined.

	
id

	Id of this rule configuration this should be unique.

	
description

	Quick description of what this rule is intended for.

	
rule_type

	Id of the rule to use. This is dot separated string containing the
name of the package defining the rule type and the rule type name.

	
config

	Configuration dictionary to use to instantiate the rule

exopy.measurement.monitors.text_monitor.rules.base_views module

Base classes for rules editing widgets.

	
class exopy.measurement.monitors.text_monitor.rules.base_views.BaseRuleView(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Base class for defining custom widgets to edit a rule.

	
name_and_desc

	

	
plugin

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
rule

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
validate

	

	
class exopy.measurement.monitors.text_monitor.rules.base_views.DescriptionEditionPopup(parent=None, **kwargs)

	Bases: enaml.widgets.popup_view.PopupView

Popup view used to edit the description of a rule.

	
rule

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.monitors.text_monitor.rules.base_views.RuleIdValidator

	Bases: enaml.validator.Validator

Validator checking that the name provided by the user does not
already exist.

	
ids

	A member which will coerce a value to a given instance type.

Unlike Typed or Instance, a Coerced value is not intended to be
set to None.

	
message

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
validate(text)

	Check that the proposed id does not already exist.

exopy.measurement.monitors.text_monitor.rules.edition_views module

Collection of widgets used to create and edit rules.

	
class exopy.measurement.monitors.text_monitor.rules.edition_views.CreateRuleDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog used to create a new rule.

	
plugin

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
rule

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.monitors.text_monitor.rules.edition_views.EditRulesView(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog to edit all the rules attached to a monitor.

	
monitor

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
plugin

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.measurement.monitors.text_monitor.rules package

Submodules

	exopy.measurement.monitors.text_monitor.rules.base module

	exopy.measurement.monitors.text_monitor.rules.base_views module

	exopy.measurement.monitors.text_monitor.rules.edition_views module

	exopy.measurement.monitors.text_monitor.rules.infos module

	exopy.measurement.monitors.text_monitor.rules.std_rules module

	exopy.measurement.monitors.text_monitor.rules.std_views module

exopy.measurement.monitors.text_monitor.rules.infos module

Container object to store rules declarations.

	
class exopy.measurement.monitors.text_monitor.rules.infos.RuleInfos

	Bases: atom.atom.Atom

Container object to store rules declarations.

	
cls

	Class implementing the logic of the rule.

	
view

	Enaml widget used to edit the rules parameters.

exopy.measurement.monitors.text_monitor.rules.std_rules module

Rules allow to defines some automatic handling of database entries in the
TextMonitor.

	
class exopy.measurement.monitors.text_monitor.rules.std_rules.RejectRule

	Bases: exopy.measurement.monitors.text_monitor.rules.base.BaseRule

Automatically remove an entry matching one of the specified suffixes.

	
try_apply(new_entry, monitor)

	Hide an entry if it suffix match.

	
class exopy.measurement.monitors.text_monitor.rules.std_rules.FormatRule

	Bases: exopy.measurement.monitors.text_monitor.rules.base.BaseRule

Create a new entry with a special formatting if some entries exist.

Simple entries which would be redundant with the informations contained
in the new formatting can be automatically hidden.

	
new_entry_formatting

	The format in which the new entry created by the rule should be
displayed

	
new_entry_suffix

	The suffix of the new entry created by the rule.

	
hide_entries

	Whether or not to hide the entries used by the rules.

	
try_apply(new_entry, monitor)

	If all suffixes are found for a single task, create a new entry
and hide the components if asked to.

exopy.measurement.monitors.text_monitor.rules.std_views module

Edition widgets for the two standard rules : reject and format

	
class exopy.measurement.monitors.text_monitor.rules.std_views.FormatRuleView(parent=None, **kwargs)

	Bases: exopy.measurement.monitors.text_monitor.rules.base_views.BaseRuleView

Widget allowing to specify the suffixes and format for a FormatRule.

	
validate

	

	
class exopy.measurement.monitors.text_monitor.rules.std_views.RejectRuleView(parent=None, **kwargs)

	Bases: exopy.measurement.monitors.text_monitor.rules.base_views.BaseRuleView

Widget allowing to specify the suffix to match for a RejectRule.

	
validate

	

	
class exopy.measurement.monitors.text_monitor.rules.std_views.SuffixesValidator

	Bases: enaml.validator.Validator

Validator that the suffixes entries is a comma separated list.

	
message

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
validate(text)

	Check that the proposed suffixes are a comma separated list.

exopy.measurement.workspace.checks_display module

Widgets used to display errors which occured when running a measurement checks.

	
class exopy.measurement.workspace.checks_display.ChecksDisplay(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Widgets displaying all the errors which occured when testing.

	
errors

	

	
is_warning

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.measurement.workspace.content module

Definition of the workspace content.

	
class exopy.measurement.workspace.content.MeasureContent(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Central window content when the measurement workspace is active.

	
workspace

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.measurement.workspace package

Submodules

	exopy.measurement.workspace.checks_display module

	exopy.measurement.workspace.content module

	exopy.measurement.workspace.manifest module

	exopy.measurement.workspace.monitors_window module

	exopy.measurement.workspace.tools_edition module

	exopy.measurement.workspace.workspace module

exopy.measurement.workspace.manifest module

Definition of the workspace content and contributed menus.

	
class exopy.measurement.workspace.manifest.MeasurementSpaceMenu(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Contribution to the main window of the MeasurementSpace.

	
workspace

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.workspace.manifest.MoreVisibleLabel(parent=None, **kwargs)

	Bases: enaml.styling.StyleSheet

Style sheet allowing to use a large font for the save confirmation popup

	
class exopy.measurement.workspace.manifest.SaveConfirm(parent=None, **kwargs)

	Bases: enaml.widgets.popup_view.PopupView

Popup signaling that a measurement was correctly saved.

	
measurement_name

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
exopy.measurement.workspace.manifest.load_measurement(event)

	Load a measurement stored in a config file.

	
exopy.measurement.workspace.manifest.load_template(event)

	Create a new measurement using a task template as root.

	
exopy.measurement.workspace.manifest.new_measurement(event)

	Create a new blank measurement.

	
exopy.measurement.workspace.manifest.save_measurement(event)

	Save a measurement.

	
exopy.measurement.workspace.manifest.save_measurement_as(event)

	Save a measurement to a location specified by the user.

exopy.measurement.workspace.measurement_edition module

Widget related to measurement edition tasks.

	
class exopy.measurement.workspace.measurement_edition.ComplexMenu(parent=None, **kwargs)

	Bases: enaml.widgets.menu.Menu

Menu for tasks inheriting from ComplexTask (ie task with children).

	
context

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
workspace

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.workspace.measurement_edition.MeasEditionView(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Main view for measurement edition.

	
dock_item

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
editors

	

	
measurement

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
post_set_measurement

	

	
selected_task

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
workspace

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.workspace.measurement_edition.MeasureEditorDialog(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Dialog allowing to re-edit a measurement once it is in the queue.

	
measurement

	

	
workspace

	

	
class exopy.measurement.workspace.measurement_edition.MeasurementEditorDockItem(parent=None, **kwargs)

	Bases: exopy.measurement.workspace.measurement_edition._MeasDockItem

DockItem used for editing a measurement, main component of the workspace
content.

	
measurement

	

	
workspace

	

	
class exopy.measurement.workspace.measurement_edition.SaveAction(parent=None, **kwargs)

	Bases: enaml.widgets.action.Action

Action used to save task as a template.

	
action_context

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
workspace

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.workspace.measurement_edition.SimpleMenu(parent=None, **kwargs)

	Bases: enaml.widgets.menu.Menu

Menu for tasks inheriting from SimpleTask (ie task with no children).

	
context

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
workspace

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.workspace.measurement_edition.TaskCopyAction(parent=None, **kwargs)

	Bases: enaml.widgets.action.Action

Copies the current task object to the paste buffer.

	
action_context

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
workspace

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.workspace.measurement_edition.TaskTreeNode(parent=None, **kwargs)

	Bases: exopy.utils.widgets.tree_nodes.TreeNode

Common settings for tree nodes for tasks.

	
enter_rename

	

	
get_label

	

	
exopy.measurement.workspace.measurement_edition.build_task(workbench)

	Call the Command responsible for building a task.

exopy.measurement.workspace.measurement_execution module

Workspace used for editing and executing measures.

	
class exopy.measurement.workspace.measurement_execution.ExecutionDockItem(parent=None, **kwargs)

	Bases: enaml.widgets.dock_item.DockItem

Dock item presenting the currently enqueued measures.

	
move_measurement

	

	
remove_measurement

	

	
workspace

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.workspace.measurement_execution.MeasView(parent=None, **kwargs)

	Bases: enaml.widgets.group_box.GroupBox

Simple visual summary of a measurement.

	
layout_constraints

	

	
model

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
exopy.measurement.workspace.measurement_execution.label_maker(running, paused)

	Helper determining the proper label for the start button.

exopy.measurement.workspace.measurement_tracking module

Thread-loke object keeping track of the last edited measurement.

	
class exopy.measurement.workspace.measurement_tracking.MeasurementTracker

	Bases: atom.atom.Atom

Object responsible for tracking the currently edited measurement.

The tracking relies on the last focus that got focus.

	
start(measurement)

	Start the working thread.

	
stop()

	Stop the working thread.

	
enqueue(widget)

	Enqueue a newly selected widget.

	
run()

	Method called by the working thread.

	
get_selected_measurement()

	Get the currently selected measurement.

The measurement is returned only when thread in done processing the
enqueued widgets.

	
set_selected_measurement(measurement)

	Set the currently selected measurement.

This is used when the selected measurement does not result from
focusing.

exopy.measurement.workspace.monitors_window module

A window used to display monitors during a measurement execution.

	
class exopy.measurement.workspace.monitors_window.MonitorsWindow(parent=None, **kwargs)

	Bases: enaml.widgets.window.Window

Window displaying monitors attached to a measurement in a dock area.

This window will close only if it is hidden first, otherwise it will
simply hide. This allow to use a single window per session and hence
preserve its position and layout.

	
dock_area

	

	
measurement

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.measurement.workspace.tools_edition module

Widgets dedicated to edit the tools attached to a measurement.

	
class exopy.measurement.workspace.tools_edition.NonEditableTool(parent=None, **kwargs)

	Bases: enaml.widgets.container.Container

Widget used when the make_view method of the tool declaration return
None

	
msg

	

	
tool

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.workspace.tools_edition.ToolSelector(parent=None, **kwargs)

	Bases: enaml.widgets.dialog.Dialog

Simple dialog to select a tool.

	
find_decl

	

	
kind

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
measurement

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
selected_decl

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.measurement.workspace.tools_edition.ToolsEditor(parent=None, **kwargs)

	Bases: exopy.utils.enaml_destroy_hook.add_destroy_hook.<locals>.Destroyable

Widget used to edit the tools parameters of a measurement.

	
kind

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
make_view

	

	
mandatory_tools

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
measurement

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
selected_id

	

	
update_items

	

	
class exopy.measurement.workspace.tools_edition.ToolsEditorDockItem(parent=None, **kwargs)

	Bases: enaml.widgets.dock_item.DockItem

DockItem for editing the tools attached to a measurement.

	
measurement

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.measurement.workspace.workspace module

Workspace used for editing and executing measures.

	
class exopy.measurement.workspace.workspace.MeasurementSpace(parent=None, **kwargs)

	Bases: enaml.workbench.ui.workspace.Workspace

Workspace dedicated tot measurement edition and execution.

	
plugin

	Reference to the plugin to which the workspace is linked.

	
log_model

	Reference to the log panel model received from the log plugin.

	
last_selected_measurement

	Reference to the last edited measurement used for saving.

	
window_title

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
start()

	Start the workspace, create a blanck measurement if necessary and
get engine contribution.

	
stop()

	Stop the workspace and clean.

	
new_measurement(dock_item=None)

	Create a new edited measurement using the default tools.

	Parameters

	dock_item – Dock item used for editing the measurement, if None a new item will
be created and inserted in the dock area.

	
save_measurement(measurement, auto=True)

	Save a measurement in a file.

	Parameters

	
	measurement (Measurement) – Measurement to save.

	auto (bool [https://docs.python.org/3/library/functions.html#bool], optional) – When true if a path is associated to the measurement save it there,
otherwise ask the user where to save it.

	
load_measurement(mode, dock_item=None)

	Load a measurement.

	Parameters

	mode ({'file', 'template'}) – In file mode, ask the user to specify a file from which to load a
measurement. In template mode, ask the user to choose a template
and use the defaults settings of the plugin for the tools..

	
enqueue_measurement(measurement)

	Put a measurement in the queue if it pass the tests.

	Parameters

	measurement (Measurement) – Instance of Measurement representing the measurement.

	Returns

	True if the measurement was successfully enqueued, False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
reenqueue_measurement(measurement)

	Mark a measurement already in queue as fitted to be executed.

This method can be used to re-enqueue a measurement that previously
failed, for example because a profile was missing, the measurement can
then be edited again and will be executed in its turn.

WARNING : the test are run again !!!

	Parameters

	measurement (Measurement) – The measurement to re-enqueue

	
remove_processed_measurements()

	Remove all the measures which have been processed from the queue.

This method rely on the status of the measurement. Only measures whose
status is ‘READY’ will be left in the queue.

	
start_processing_measurements()

	Starts to perform the measurement in the queue.

Measurement are processed in their order of appearance in the queue.

	
process_single_measurement(measurement)

	Performs a single measurement and then stops.

	Parameters

	measurement (Measurement) – Measurement to perform.

	
pause_current_measurement()

	Pause the currently active measurement.

	
resume_current_measurement()

	Resume the currently paused measurement.

	
stop_current_measurement(no_post_exec=False, force=False)

	Stop the execution of the currently executed measurement.

	
stop_processing_measurements(no_post_exec=False, force=False)

	Stop processing enqueued measurement.

	
property dock_area

	Getter for the dock_area of the content.

exopy.tasks.tasks.logic.conditional_task module

Task equivalent to an if statement.

	
class exopy.tasks.tasks.logic.conditional_task.ConditionalTask

	Bases: exopy.tasks.tasks.base_tasks.ComplexTask

Task calling its children only if a given condition is met.

	
condition

	Condition to meet in order to perform the children tasks.

	
perform()

	Call the children task if the condition evaluate to True.

exopy.tasks.tasks.logic.declarations module

Logic tasks declarations included in the task manager manifest.

	
class exopy.tasks.tasks.logic.declarations.LogicTasks(parent=None, **kwargs)

	Bases: exopy.tasks.declarations.Tasks

Logic tasks declarations.

exopy.tasks.tasks.logic.loop_exceptions module

Exceptions used to interact with looping tasks.

	
exception exopy.tasks.tasks.logic.loop_exceptions.LoopException

	Bases: BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]

Base exception used for control flows in tasks.

	
exception exopy.tasks.tasks.logic.loop_exceptions.BreakException

	Bases: exopy.tasks.tasks.logic.loop_exceptions.LoopException

Exception used to signal a looping task it should break.

	
exception exopy.tasks.tasks.logic.loop_exceptions.ContinueException

	Bases: exopy.tasks.tasks.logic.loop_exceptions.LoopException

Exception used to signal a looping task it should continue.

exopy.tasks.tasks.logic.loop_exceptions_tasks module

Tasks used to modify the execution of a loop.

	
class exopy.tasks.tasks.logic.loop_exceptions_tasks.BreakTask

	Bases: exopy.tasks.tasks.base_tasks.SimpleTask

Task breaking out of a loop when a condition is met.

See Python break statement documenttaion.

	
condition

	Condition under which to perform the break.

	
parallel

	Never run this task in parallel.

	
check(*args, **kwargs)

	Check that the parent makes sense

	
perform()

	If the condition evaluates to true, break from the loop.

	
class exopy.tasks.tasks.logic.loop_exceptions_tasks.ContinueTask

	Bases: exopy.tasks.tasks.base_tasks.SimpleTask

Task jumping to next loop iteration when a condition is met.

See Python continue statement documenttaion.

	
condition

	Condition under which to continue.

	
parallel

	Never run this task in parallel.

	
check(*args, **kwargs)

	Check that the parent makes sense

	
perform()

	“If the condition evaluates to true, continue.

exopy.tasks.tasks.logic.loop_iterable_interface module

Interface allowing to use an iterable in a LoopTask.

	
class exopy.tasks.tasks.logic.loop_iterable_interface.IterableLoopInterface

	Bases: exopy.tasks.tasks.task_interface.TaskInterface

Interface used to loop on a Python iterable.

	
iterable

	Iterable on which to iterate.

	
check(*args, **kwargs)

	Check that the iterable member evaluation does yield an iterable.

	
perform()

	Compute the iterable and pass it to the LoopTask.

exopy.tasks.tasks.logic.loop_linspace_interface module

Interface allowing to use a linspace in a LoopTask

	
class exopy.tasks.tasks.logic.loop_linspace_interface.LinspaceLoopInterface

	Bases: exopy.tasks.tasks.task_interface.TaskInterface

Common logic for all loop tasks.

	
start

	Value at which to start the loop.

	
stop

	Value at which to stop the loop (included)

	
step

	Step between loop values.

	
check(*args, **kwargs)

	Check evaluation of all loop parameters.

	
perform()

	Build the arange and pass it to the LoopTask.

exopy.tasks.tasks.logic.loop_task module

Task allowing to perform a loop. The iterable is given by an interface.

	
class exopy.tasks.tasks.logic.loop_task.LoopTask

	Bases: exopy.tasks.tasks.task_interface.InterfaceableTaskMixin, exopy.tasks.tasks.base_tasks.ComplexTask

Complex task which, at each iteration, call all its child tasks.

	
timing

	Flag indicating whether or not to time the loop.

	
task

	Task to call before other child tasks with current loop value. This task
is simply a convenience and can be set to None.

	
database_entries

	A value of type dict.

	
check(*args, **kwargs)

	Overriden so that interface check are run before children ones.

	
perform_loop(iterable)

	Perform the loop on the iterable calling all child tasks at each
iteration.

This method shoulf be called by the interface at the appropriate time.

	Parameters

	iterable (iterable) – Iterable on which the loop should be performed.

	
interface

	A Typed which delays resolving the type definition.

The first time the value is accessed or modified, the type will
be resolved and the forward typed will behave identically to a
normal typed.

	
name

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

exopy.tasks.tasks.logic.while_task module

Task allowing to use a while statement.

	
class exopy.tasks.tasks.logic.while_task.WhileTask

	Bases: exopy.tasks.tasks.base_tasks.ComplexTask

Task breaking out of a loop when a condition is met.

See Python break statement documenttaion.

	
condition

	Condition under which to continue looping.

	
database_entries

	A value of type dict.

	
perform()

	Loop as long as condition evaluates to True.

exopy.tasks.tasks.logic.views.conditional_view module

View for the ConditionalTask.

	
class exopy.tasks.tasks.logic.views.conditional_view.ConditionalView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.ComplexTaskView

View for ConditionalTask.

exopy.tasks.tasks.logic.views package

Submodules

	exopy.tasks.tasks.logic.views.conditional_view module

	exopy.tasks.tasks.logic.views.loop_exceptions_views module

	exopy.tasks.tasks.logic.views.loop_iterable_view module

	exopy.tasks.tasks.logic.views.loop_linspace_view module

	exopy.tasks.tasks.logic.views.loop_view module

	exopy.tasks.tasks.logic.views.while_view module

exopy.tasks.tasks.logic.views.loop_exceptions_views module

View for the BreakTask and ContinueTask.

	
class exopy.tasks.tasks.logic.views.loop_exceptions_views.BreakView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.BaseTaskView

View for the BreakTask.

	
class exopy.tasks.tasks.logic.views.loop_exceptions_views.ContinueView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.BaseTaskView

View for the ContinueTask.

exopy.tasks.tasks.logic.views.loop_iterable_view module

View for the LoopIterableInterface.

	
class exopy.tasks.tasks.logic.views.loop_iterable_view.IterableLoopField(parent=None, **kwargs)

	Bases: exopy.utils.widgets.qt_completers.QtLineCompleter

Field for IterableLoopÎnterface.

	
interface

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
root

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
class exopy.tasks.tasks.logic.views.loop_iterable_view.IterableLoopLabel(parent=None, **kwargs)

	Bases: enaml.widgets.label.Label

Label for IterableLoopÎnterface.

	
inline

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
interface

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
root

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.tasks.tasks.logic.views.loop_linspace_view module

View for the LinspaceLoopInterface.

	
class exopy.tasks.tasks.logic.views.loop_linspace_view.LinspaceLoopView(parent=None, **kwargs)

	Bases: enaml.widgets.splitter.Splitter

View for the LinspaceLoopInterface.

	
interface

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

	
root

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_IsInstance C API call.
This call is equivalent to isinstance(value, kind) and all the
same rules apply.

The value of an Instance may be set to None.

exopy.tasks.tasks.logic.views.loop_view module

View for the LoopTask.

	
class exopy.tasks.tasks.logic.views.loop_view.LoopView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.ComplexTaskView

View for the LoopTask.

This view handles the insertion of the selected interface views.

	
layout_constraints

	

	
exopy.tasks.tasks.logic.views.loop_view.format_name(interface_id)

	Helper funtion formatting interfaces name for object combo widget.

	
exopy.tasks.tasks.logic.views.loop_view.make_view(root, task)

	Create the view for the task embedded in the loop and set the in_loop
flag if pertinent.

exopy.tasks.tasks.logic.views.while_view module

View for the WhileTask.

	
class exopy.tasks.tasks.logic.views.while_view.WhileView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.ComplexTaskView

View for the WhileTask.

exopy.tasks.tasks.util.declarations module

Utilities tasks declarations included in the task manager manifest.

	
class exopy.tasks.tasks.util.declarations.UtilTasks(parent=None, **kwargs)

	Bases: exopy.tasks.declarations.Tasks

Utilities tasks declarations.

exopy.tasks.tasks.util.definition_task module

Task for defining various definitions.

	
class exopy.tasks.tasks.util.definition_task.DefinitionTask

	Bases: exopy.tasks.tasks.base_tasks.SimpleTask

Task defining a list of global variables in the database. Possibly used
in other tasks.

Any valid python expression can be evaluated; any valid key entry of the
database will be replaced by it’s value.

	
util_task = True

	Class attribute marking this task as being logical, used in filtering.

	
definitions

	A value which allows objects of a given type or types.

Values will be tested using the PyObject_TypeCheck C API call.
This call is equivalent to type(obj) in cls.mro(). It is less
flexible but faster than Instance. Use Instance when allowing
heterogenous values and Typed when the value type is explicit.

The value of a Typed may be set to None

	
perform()

	Do nothing (Declared only to avoid raising a NotImplementedError)

	
check(*args, **kwargs)

	In the check() method we write all values to the database.

exopy.tasks.tasks.util.formula_task module

Task for defining mathematical formulas.

	
class exopy.tasks.tasks.util.formula_task.FormulaTask

	Bases: exopy.tasks.tasks.base_tasks.SimpleTask

Compute values according to formulas.

Any valid python expression can be evaluated; any valid key entry of the
database will be replaced by it’s value.

	
formulas

	List of formulas.
To modify it (add/remove entry) the dictionary must be copied, modified
and then reassigned.

	
wait

	A value of type dict.

	
perform()

	Evaluate alll formulas and update the database.

	
check(*args, **kwargs)

	Validate that all formulas can be evaluated.

exopy.tasks.tasks.util.log_task module

Logging Task.

	
class exopy.tasks.tasks.util.log_task.LogTask

	Bases: exopy.tasks.tasks.base_tasks.SimpleTask

Task logging a message. Loopable.

	
message

	Message to log when the task is executed.

	
database_entries

	A value of type dict.

	
wait

	A value of type dict.

	
perform(*args, **kwargs)

	Format the message and log it.

exopy.tasks.tasks.util.sleep_task module

Task that makes the system wait on all multithreading pools
for a set amount of time.

	
class exopy.tasks.tasks.util.sleep_task.SleepTask

	Bases: exopy.tasks.tasks.base_tasks.SimpleTask

Simply sleeps for the specified amount of time.
Wait for any parallel operation before execution by default.

	
time

	A value of type unicode.

By default, plain strings will be promoted to unicode strings. Pass
strict=True to the constructor to enable strict unicode checking.

	
wait

	A value of type dict.

	
database_entries

	A value of type dict.

	
perform()

	Main method of the task called when the measurement is performed.

	
check(*args, **kwargs)

	Check if time > 0

exopy.tasks.tasks.util.views.definition_view module

View for the DefinitionView.

	
class exopy.tasks.tasks.util.views.definition_view.DefinitionView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.BaseTaskView

View for DefinitionView.

exopy.tasks.tasks.util.views.formula_view module

View for the Sleep Task.

	
class exopy.tasks.tasks.util.views.formula_view.FormulaView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.BaseTaskView

View for Formulas Task.

exopy.tasks.tasks.util.views package

Submodules

	exopy.tasks.tasks.util.views.definition_view module

	exopy.tasks.tasks.util.views.formula_view module

	exopy.tasks.tasks.util.views.log_view module

	exopy.tasks.tasks.util.views.sleep_view module

exopy.tasks.tasks.util.views.log_view module

View for the Log Task.

	
class exopy.tasks.tasks.util.views.log_view.LogView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.BaseTaskView

View for Log Task.

exopy.tasks.tasks.util.views.sleep_view module

View for the Sleep Task.

	
class exopy.tasks.tasks.util.views.sleep_view.SleepView(parent=None, **kwargs)

	Bases: exopy.tasks.tasks.base_views.BaseTaskView

View for Sleep Task.

exopy.testing.measurement.contributions module

Dummy contributions to the measurement plugin used for testing purposes.

	
class exopy.testing.measurement.contributions.Flags

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
BUILD_FAIL_ANALYSE = False

	

	
BUILD_FAIL_COLLECT = False

	

	
MONITOR_FAIL_WIDGET = False

	

	
RUNTIME1_FAIL_ANALYSE = False

	

	
RUNTIME1_FAIL_COLLECT = False

	

	
RUNTIME1_UNAVAILABLE = False

	

	
RUNTIME2_FAIL_ANALYSE = False

	

	
RUNTIME2_FAIL_COLLECT = False

	

	
RUNTIME2_UNAVAILABLE = False

	

	
class exopy.testing.measurement.contributions.MeasureTestManifest(parent=None, **kwargs)

	Bases: enaml.workbench.plugin_manifest.PluginManifest

Manifest contributing dummy extensions to measurement plugin.

	
class exopy.testing.measurement.contributions.MonitorTestItem(parent=None, **kwargs)

	Bases: exopy.measurement.monitors.base_monitor.BaseMonitorItem

exopy.testing.measurement.dummies module

Dummy engines, editors and measurement tools used for testing.

Those are contributed by the manifest found in contributions.enaml

	
class exopy.testing.measurement.dummies.DummyEditor(parent=None, **kwargs)

	Bases: exopy.measurement.editors.base_editor.BaseEditor

Dummy editor used for testing.

	
class exopy.testing.measurement.dummies.DummyEngine

	Bases: exopy.measurement.engines.base_engine.BaseEngine

Dummy engine used for testing.

	
fail_perform

	A value of type bool.

	
waiting

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
go_on

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
should_pause

	A value of type bool.

	
accept_pause

	A value of type bool.

	
should_resume

	A value of type bool.

	
measurement_force_enqueued

	A value of type bool.

	
signal_resuming

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
go_on_resuming

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
signal_resumed

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
go_on_resumed

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
perform(exec_infos)

	Simply return the exec_infos.

	
pause()

	Ask the engine to pause the execution.

This method should not wait for the task to pause to return.
When the pause is effective the engine should signal it by updating its
status.

	
resume()

	Ask the engine to resume the execution.

This method should not wait for the measurement to resume.
When the pause is over the engine should signal it by updating its
status.

	
stop(force=False)

	Stop the execution.

	
shutdown(force=False)

	Ask the engine to stop completely.

After a call to this method the engine may need to re-initialize a
number of things before running the next task.
This method should not wait for the engine to shutdown save if a
forced stop was requested.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Force the engine to stop the performing the task. This allow the
engine to use any means necessary to stop, in this case only should
the call to this method block.

	
class exopy.testing.measurement.dummies.DummyHook

	Bases: atom.atom.Atom

Base class for dummy mesure hook used for testing.

	
fail_check

	A value of type bool.

	
fail_run

	A value of type bool.

	
should_pause

	A value of type bool.

	
accept_pause

	A value of type bool.

	
should_resume

	A value of type bool.

	
stop_called

	A value of type bool.

	
waiting

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
go_on

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
signal_resuming

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
go_on_resuming

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
signal_resumed

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
go_on_resumed

	A member class which supports value initialization.

A plain Value provides support for default values and factories,
but does not perform any type checking or validation. It serves as
a useful base class for scalar members and can be used for cases
where type checking is not needed (like private attributes).

	
run(workbench, engine)

	Run method esecuting the hook.

	
pause()

	Method to call to pause execution.

	
resume()

	Method to call to resume execution.

	
stop(force=False)

	Method to call to stop execution.

	
class exopy.testing.measurement.dummies.DummyPreHook

	Bases: exopy.testing.measurement.dummies.DummyHook, exopy.measurement.hooks.base_hooks.BasePreExecutionHook

Dummy pre-execution hook used for testing.

	
check(workbench, **kwargs)

	Fail the check if the fail_check member is set or ‘fail’ is found in
the kwargs.

	
list_runtimes(workbench)

	Say that dummy is a dependency.

	
accept_pause

	A value of type bool.

	
fail_check

	A value of type bool.

	
fail_run

	A value of type bool.

	
should_pause

	A value of type bool.

	
class exopy.testing.measurement.dummies.DummyMonitor

	Bases: exopy.measurement.monitors.base_monitor.BaseMonitor

Dummy monitor used for testing.

	
running

	A value of type bool.

	
monitored_entries

	A member which allows list values.

Assigning to a list creates a copy. The orginal list will remain
unmodified. This is similar to the semantics of the assignment
operator on the C++ STL container classes.

	
received_news

	A member which allows list values.

Assigning to a list creates a copy. The orginal list will remain
unmodified. This is similar to the semantics of the assignment
operator on the C++ STL container classes.

	
start()

	Start the activity of the monitor.

When this method is called the monitor is already observing the engine
and connected to its view.

	
stop()

	Stop the activity of the monitor.

When this method is invoked the monitor is no longer observing the
engine.

	
refresh_monitored_entries(entries=None)

	Do nothing when refreshing.

	
handle_database_entries_change(news)

	Add all entries to the monitored ones.

	
handle_database_nodes_change(news)

	Simply ignore nodes updates.

	
process_news(news)

	Handle news received from the engine.

This method will be connected to the news signal of the engine when
the measurement is started. The value received will be a tuple
containing the name of the updated database entry and its new value.

This method is susceptible to be called in a thread that is not the GUI
thread. Any update of members that are connected to the view should be
done using enaml.application.deferred_call/schedule.

	
class exopy.testing.measurement.dummies.DummyPostHook

	Bases: exopy.testing.measurement.dummies.DummyHook, exopy.measurement.hooks.base_hooks.BasePostExecutionHook

Dummy post execution hook used for testing.

	
check(workbench, **kwargs)

	Fail the check if the fail_check member is set or ‘fail’ is found in
the kwargs.

	
accept_pause

	A value of type bool.

	
fail_check

	A value of type bool.

	
fail_run

	A value of type bool.

	
should_pause

	A value of type bool.

exopy.testing.measurement.fixtures module

Fixture for testing the measurement plugin.

	
exopy.testing.measurement.fixtures.measurement_workbench(workbench, monkeypatch, app_dir)

	Setup the workbench in such a way that the measurement plugin can be
tested.

	
exopy.testing.measurement.fixtures.measurement(measurement_workbench)

	Register the dummy testing tools and create an empty measurement.

exopy.testing.measurement package

Subpackages

	monitors
	Subpackages

	workspace
	Submodules

Submodules

	exopy.testing.measurement.contributions module

	exopy.testing.measurement.dummies module

	exopy.testing.measurement.fixtures module

exopy.testing.measurement.monitors package

Subpackages

	text_monitor
	Submodules
	exopy.testing.measurement.monitors.text_monitor.fixtures module

exopy.testing.measurement.monitors.text_monitor.fixtures module

Fixtures used to test text monitor related systems.

	
exopy.testing.measurement.monitors.text_monitor.fixtures.text_monitor_workbench(windows, measurement_workbench)

	Register the text monitor manifest.

exopy.testing.measurement.monitors.text_monitor package

Submodules

	exopy.testing.measurement.monitors.text_monitor.fixtures module

exopy.testing.measurement.workspace.fixtures module

Measurement workspace fixture functions.

	
exopy.testing.measurement.workspace.fixtures.workspace(measurement_workbench, measurement, windows)

	Create a measurement workspace.

exopy.testing.measurement.workspace package

Submodules

	exopy.testing.measurement.workspace.fixtures module

Measurement and tools

The measurement system is at the heart of Exopy. At the centre of a measurement one
finds a hierarchy of tasks, but around it revolves a number of tools allowing
to customize its execution. This section will present the possibility of
extension Exopy offers as far as the measurement system is concerned.

Note

Methods signature are not detailed and one should consult the docstrings of
the base classes when implementing a new feature.

Contents

	Measurement and tools

	Tools

	Pre_execution hooks

	Monitors

	Post-execution hooks

	Editors

	Engines

Tools

Tools allow to customize what happens before and after the execution of the
task hierarchy when a task is run, they can also be used to report to the user
the progress of the measurement.

Note

As usual all declarations must possess a unique id and a description.

Pre_execution hooks

A pre-execution hook is run before the tasks attached to a measurement. Actually a
pre-hook can have two purposes :

	extend the checks performed by the tasks. Some checks might requires to
compare state of different tasks which is not possible from within the check
method of task, on the contrary a pre-hook have access to the whole tree and
is free to walk it.

	perform some custom actions before the task hierarchy is executed. It can for
example run some initialisation procedure or query the state of some other
part of the application before running the core of the measurement.

Adding a pre-hook requires to :

	implement the logic by subclassing BasePreExecutionHook. The methods that can be
overridden are :

	check: make sure that the measurement is in a proper state to be executed.

	run: execute any custom logic. If any task is to be executed it should be
executed by passing to the active engine.

	pause/resume/stop: to implement if the run method execution can take a
long time (typically if tasks are involved).

	list_runtimes: let the measurement know the runtime dependencies (such as
instrument drivers) if any.

Additionally if any entry is contributed to the task hierarchy they should
be added when the tool is linked (or later during edition of the tool).

	declare it by contributing a PreExecutionHook to the
‘exopy.measurement.pre-execution’ extension point. The declaration should
re-declare the functions :

	new: which should create a new instance of the tool.

	make_view: which should create a widget used to edit the tool. If the tool
has no user settable parameters this method can be ignored.

	If a make_view method has been declared then one needs to create the
associated widget which should inherit of Container.

Monitors

Monitors are used to follow the progress of a measurement. They specify a number of
database entries they are interested in and will receive notifications when
the concerned entry is updated during the execution of the task hierarchy.

Adding a monitor requires to :

	implement the logic by subclassing BaseMonitor. The methods that can be
overridden are:

	start: Called when the execution of the task hierarchy is about to start.
Prepare the monito to run.

	stop: Called when the execution is over. Perform some clean up.

	refresh_monitored_entries: Assume that the entries of the database are the
one passed and determine which ones to monitor.

	handle_database_entries_change: React to the addition/deletion/renaming of
an entry from the database of the task hierarchy (happen only during
edition time).

	handle_database_nodes_change: React to the addition/deletion/renaming of
a node in the database of the task hierarchy (happen only during
edition time). Usually only renaming matters.

	process_news: During execution, react to the update of an entry.

Additionally the database entries to observe should be stored using their
full path in the ‘monitored_entries’ member.

	declare it by contributing a BaseMonitor to the ‘exopy.measurement.monitors’
extension point. The declaration should re-declare the functions :

	new: which should create a new instance of the monitor.

	create_item: which should create the widget displayed during the execution
of the task hierarchy. This widget should inherit from DockItem and its
name should be set when it is instantiated to the id of the monitor.

	To create the widget used to display the monitor informations. This widget
should inherit from DockItem.

Post-execution hooks

A post-execution hook is run after the tasks attached to a measurement, and this no
matter the execution succeeded or not (save if the user stopped the measurement and
asked not to run them). They are hence perfectly fitted to run clean up.

Adding a post-hook requires to :

	implement the logic by subclassing BasePostExecutionHook. The methods that can be
overridden are :

	check: make sure that the measurement is in a proper state to be executed.

	run: execute any custom logic. If any task is to be executed it should be
executed by passing to the active engine. The post hook can inspect the
measurement it belongs to to identify whether the execution finished correctly
(‘task_execution_result’ member).

	pause/resume/stop: to implement if the run method execution can take a
long time (typically if tasks are involved).

	list_runtimes: let the measurement know the runtime dependencies (such as
instrument drivers) if any.

Additionally if any entry is contributed to the task hierarchy they should
be added when the tool is linked (or later during edition of the tool).

	declare it by contributing a PostExecutionHook to the
‘exopy.measurement.post-execution’ extension point. The declaration should
re-declare the functions :

	new: which should create a new instance of the tool.

	make_view: which should create a widget used to edit the tool. If the tool
has no user settable parameters this method can be ignored.

	If a make_view method has been declared then one needs to create the
associated widget which should inherit of Container.

Note

All tools shares the following methods that can be overridden as
necessary (subclasses of BaseMeasureTool):

	get_state: method used to save the state of the tool under the .ini
format.

	set_state: restore the state of a tool based of the parameters found
in an .ini file

	link_to_measurement: method called when the tool is added to a measurement.

	unlink_from_measurement: method called when the tool is removed from a
measurement.

Editors

Editors are the GUI elements used to edit the different aspects of a task
hierarchy. Of course the most basic relies on the view associated to each task,
however to not crowd them it is interesting to move some settings to other
editors.

Adding an editor requires to :

	implement the GUI by subclassing BaseEditor. The methods that can be
overridden are :

	react_to_selection: which handles the editor being selected by the user.

	react_to_unselection: which handles the editor being unselected by the
user.

Of course the editor should react to a change in its selected task.
Additionally one can specify whether to hide/disabled the tree widget used
to select the task when the editor is selected.

	declare it by contributing an Editor to the ‘exopy.measurement.editors’
extension point. The declaration should re-declare the functions :

	new : which should create a new instance of the tool.

	is_meant_for : which should determine if the editor fits the currently
selected task. This method should be fast.

Engines

Engines are responsible for the execution of task hierarchies (the main one of
course but also potentially those provided by the tools). A single engine can
be selected to be used by the system at a time.

Adding an engine requires to :

	implement the logic by subclassing BaseEngine. The methods that can be
overridden are :

	perform: which executes the given task.

	pause/resume: which pauses/resumes execution. One can rely of the signals
built-in the tasks.

	stop: which stops the execution.

	shutdown: which stops the engine.

	declare it by contributing an Editor to the ‘exopy.measurement.editors’
extension point. The declaration should re-declare the functions :

	new: which should create a new instance of the tool.

	react_to_selection: which should handle the fact that the engine has been
selected to be used by the measurement plugin.

	react_to_unselection: which should handle the fact that the engine is no
longer the one used by the measurement plugin.

	contribute_to_workspace: which can add GUI elements to the workspace.

	clean_workspace: which should remove the any contributions from the
workspace.

 .._measurement_edition:

Measurement edition

So far this guide has only covered the basic edition of the tasks using the
tree view of the hierarchy and the standard editor. The following sections will
go further and explain how other editors can allow to fine tune the measurement and
how to use the tools that are pre/post-execution hooks and the monitors.

Contents

	Measurement edition

	Advanced use of editors

	Execution editor

	Task pools

	Database access exceptions

	Monitors and tools

Advanced use of editors

Dependending on the currently selected task, different editors can be
available :

	the standard editor used to edit the tasks is always present.

	the execution editor is also always present.

	the task database access editor is present for the tasks that can have
children tasks.

	other editors contributed by plugins may be present for some tasks.

The standard editor provide a different view for each task depending on its
parameters and is hence the most commonly used.
For example, if you create a “Definition” task, it will appear in the standard
editor, first as a “Add first element” button, and then once you click on it
as two blank writing fields where you can enter a name and its definition.
A chevron button allows you to add another definition below.

The execution and database access editors present similar graphical user
interface for all tasks and are used to set common settings that would make
the standard editor unusable if they were present on it. They are available as
additional tabs above the tasks view. Their use is detailed in the next
sections.

Execution editor

The execution editor as its name states can be used to edit the way a task will
be executed. Three parameters are editable :

	can the application be stopped/paused just before executing a task ? By
default this is the case for all the tasks and has only a very limited
overhead. This is controlled by the ‘Stoppable’ checkbox.

	should the task be executed in a new thread ? This setting controlled by the
‘Parallel’ checkbox can be misleading in that in Python only one thread can
execute python code at any time. However this constrained is released when
calling C code (typically when performing IO operations such as writing into
a file or communicating with an instrument). So if your experiment needs to
set multiple instruments states before performing a measurement you may gain
time by doing the settings ‘in parallel’. When executing a task in parallel
it should be associated with a pool. A pool is nothing else than an id that
will be used for synchronisation.

	should the task wait for any other task before running ? This is the pendant
of the parallel setting: if a task is executed in parallel it may be crucial
for another task to be sure that it has completed before running. This
setting is controlled by the ‘Wait’ checkbox. When checked you can choose on
which parallel pool to wait on (hence the id), or not to wait on some pools
or to wait on all pools.

Task pools

A pool simply consist in a user-defined group of tasks.
In a measurement, each task can be associated with a pool from the dropdown menu
of the execution editor. To define a new pool, right click on the menu and
enter a name. You will then be able to select one or multiple of you defined
pool(s) in the wait or no wait options.

Note

It is possible to run a task in parallel and have it wait on other pools.
However note that the task will first wait in the main thread and then
move the execution to another thread.

Note

Running in task in parallel and waiting on pools can lead to small
overheads in the task execution. Hence it is advised not to use those
features in tight loops.

Database access exceptions

The database access exception editor is available only on complex tasks (ie
tasks that have child tasks). It allows to change the visibility of the
values stored in the database. Let us explain this more precisely.

To each complex task is associated a node in the database, database which is
used by the tasks to store all sorts of data they may want to share. Each task
stores its values in the node of its parent. When a task needs to access a
value stored in the database by another task, it can only look into the values
stored in the same node it is storing its data or a higher node (the into which
its parent task is writing). However in some cases this can be restrictive,
lets give a more concrete example.

Consider a measurement made of two parts:

	first a loop is run to acquire some data stored in an array.

	second the maximum of that array is extracted and use to an instrument before
running a second loop.

The task filling the array is a child of the first loop. The task looking for
the max on the other hand is a child a the root it is hence not allowed to
access the array ! So this cannot work ! This is where the database access
editor enters the game.

In this editor panel, all the entries stored in the database are represented,
each one at the level of the node in which it is stored. To add an exception
simply right click the entry and choose ‘Add access exception’. The entry will
be colored in lightblue and a new entry with a light green background will
appear in the parent node representing the exception. If you need to go further
up you can add an exception on the exception.

In the previous example we would simply have added an exception for the array
and we could have accessed it.

Monitors and tools

As briefly mentionned previously, pre/post execution hooks and monitors can be
added to a measurement. To manage those ‘tools’, you must open the dedicated panel
by clicking on the ‘Edit tools’ button.

By default a single pre-hook is attached to the measurement: the one responsible
for running the tests of the measurement, it cannot be removed.

As usual you can add new tools using the add button and edit them when they are
selected. The use of pre/post hooks being pretty straightforward it will not be
detailed here.

Monitors can prove more tricky to use. First let us define what is the role of a
monitor (and hence what it is not supposed to do). A monitor is supposed to ask for
notifications when some entries are updated in the database and react to that
change in way that lets the user know what is currently going on. First please
note that this kind of notification can be time consuming and hence it is
better not to observe values inside tight loops (whose each iteration is around
30 ms). Second a monitor should strive for stability and low memory consumption
so that the measurement does not crash because of it, which is why it should not
try to plot all the data acquired by the measurement but leave this work to
external programs.

Exopy comes with a built-in monitor which can display the values of the database
entries. It can perform some minimal formatting on those entries and you can
build new ones with custom formatting. It is attached by default to all measures.

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Exopy’s documentation!

